• Title/Summary/Keyword: Displacement and distortion

Search Result 123, Processing Time 0.021 seconds

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

A Study on Contact Dynamic Characteristics of Screw and Barrels in Injection Molding Machine (사출기 스크류와 배럴의 접촉거동 특성에 대한 연구)

  • 최동열;고영배;조승현;김청균;주성규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-220
    • /
    • 2000
  • Single flighted screw extrusion is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of screw by temperature difference and injection pressure difference cause adhesive wear by metal-to-metal contact. In this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand dynamic characteristics of screw.

  • PDF

Analysis of fiber-reinforced elastomeric isolators under pure "warping"

  • Pinarbasi, Seval;Mengi, Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.31-47
    • /
    • 2017
  • As a relatively new type of multi-layered rubber-based seismic isolators, fiber-reinforced elastomeric isolators (FREIs) are composed of several thin rubber layers reinforced with flexible fiber sheets. Limited analytical studies in literature have pointed out that "warping" (distortion) of reinforcing sheets has significant influence on buckling behavior of FREIs. However, none of these studies, to the best knowledge of authors, has investigated their warping behavior, thoroughly. This study aims to investigate, in detail, the warping behavior of strip-shaped FREIs by deriving advanced analytical solutions without utilizing the commonly used "pressure", incompressibility, inextensibility and the "linear axial displacement variation through the thickness" assumptions. Studies show that the warping behavior of FREIs mainly depends on the (i) aspect ratio (shape factor) of the interior elastomer layers, (ii) Poisson's ratio of the elastomer and (iii) extensibility of the fiber sheets. The basic assumptions of the "pressure" method as well as the commonly used incompressibility assumption are valid only for isolators with relatively large shape factors, strictly incompressible elastomeric material and nearly inextensible fiber reinforcement.

Deformation of Tunnel Affected by Adjacent Slope Excavation in a Joint Rock Mass (절리암반사면 굴착시 기존터널의 변형특성)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.891-896
    • /
    • 2008
  • Behavior of the existing tunnel in the jointed rocks was affected by the adjacent slope excavation. In this study, large scale model tests were conducted. To investigate the tunnel distortion depending on the excavated slope angle and the joint dip of the ground performed model tests were numerically back analyzed. Consequently, as the joint dip and slope angle became larger, the tunnel distortion was tended to be larger. Ground displacement was also greatly dependent on the joint dip and the excavated slope angle, which indicated the possibility of the optimal slope reinforcement.

  • PDF

A Comparative Study on the Displacement Behaviour of Triangular Plate Elements (삼각형 판 요소의 변위 거동에 대한 비교 연구)

  • 이병채;이용주;구본웅
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

An Investigation on Input Filter Design for Matrix Converters

  • Nguyen, Huu-Nhan;Dam, Duy-Hung;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.178-179
    • /
    • 2017
  • Input filter is an essential component in a practical matrix converter (MC) system to generate the sinusoidal input currents. However, the input filter causes a displacement angle between the input current of MC and the source current. In this paper, we investigate the input filter design for MCs by considering the displacement angles of the input current and the input voltage to guarantee high input power factor (IPF) operation as well as low input current harmonic contents. Simulation results are provided to validate the input filter design with near unity input power factor and low total harmonic distortion (THD) of the input current.

  • PDF

Residual Stress and Displacement Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment (후판의 부분용입 다층용접에 대한 잔류음력 및 변형해석)

  • Kim, Seok;Bae, Sung-In;Song, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1813-1819
    • /
    • 2001
  • Partial penetration welding Joint defines that groove welds without steel backing, welded from on side, and groove weeds welded from both sides but without back gouging, that is. it has an unwelded portion at the root of the weld. In this study we analysed fur residual stress and displacement distribution on partial penetration welding condition of thick plate metal. For 25.4mm thick plate, theoretical residual stress and displacement analysis by finite element method using ABAQUS was carried out and compared with the experimental result using hole-drilling method. In results of the condition of partial penetration, it appeared that longitudinal stress at welding area was a little difference and transverse stress did not have any effect by partial penetration multi-pass welding. From a point of welding distortion in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

A Worldview-2 satellite imagery pansharpening algorithm for minimizing the effects of local displacement (지역적 변위에 따른 영향을 최소화하기 위한 Worldview-2 위성영상의 융합 기법)

  • Choi, Jae-Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.577-582
    • /
    • 2011
  • In remote sensing, spatial/spectral distortions are recognized as two of the main problems in the pansharpening algorithm. Most pansharpening methodologies show a tendency to distort spatial information from objects such as buildings and vehicles because there are local spatial dissimilarities among multispectral bands in Worldview-2 satellite imagery. In this paper, we propose a new pansharpening algorithm in order to minimize the effects of the local displacement of spatial information in the pansharpening process. In experiments using Worldview-2 images, our method provided better spectral and spatial quality than pre-existing pansharpening methods.

The Change of Interior Orientation Parameters in Zoom Lens Digital Cameras (줌렌즈 디지털 카메라의 내부표정요소 변화)

  • Kim, Gi-Hong;Jeong, Soo;Kim, Baek-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • Recently, as digital photogrammetry bas been widely used in various fields including construction, it is also being applied to several industries. It is essential for interior orientation to determine accurate focal length of camera, lens distortion, location of principal point in order to apply high quality digital camera to digital photogrammetry. In this study we conducted interior orientation for zoom lens camera with regular time and zoom factors and analyzed change of radial distortion parameters and location of principal point to evaluate interior orientation stability. As a result, radial distortion parameters($k_1,k_2$) are converged into zero by increasing zoom factors. There are correlation between the change of location of point and zoom factors. The displacement of $x_p$, $y_p$ increase as zoom factors rise high.