• Title/Summary/Keyword: Displacement Ratio

Search Result 1,511, Processing Time 0.025 seconds

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

The effect of soil-structure interaction on inelastic displacement ratio of structures

  • Eser, Muberra;Aydemir, Cem
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.683-701
    • /
    • 2011
  • In this study, inelastic displacement ratios and ductility demands are investigated for SDOF systems with period range of 0.1-3.0 s. with elastoplastic behavior considering soil structure interaction. Earthquake motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used in analyses. Soil structure interacting systems are modeled with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. Results are compared with those calculated for fixed-base case. A new equation is proposed for inelastic displacement ratio of interacting system ($\tilde{C}_R$) as a function of structural period of interacting system ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}/T$). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Extension of Absolute Evaluation Technique for Ratio Error and Phase Displacement of Core Type Current Transformers: Ip =$5\;kA{\sim}40\;kA$ (철심형 전류변성기의 비오차 및 위상오차 절대 평가 기술의 확장 : 1차 전류 = $5\;kA{\sim}40\;kA$)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.431-436
    • /
    • 2008
  • We have extended an absolute evaluation method to obtain the ratio error and phase displacement of a current transformer (CT) up to primary current of 40,000 A by measuring four parameters of equivalent circuit in CT. The method was applied to CTs under test with the current ratios in the range of 5,000 A / 5 A - 40,000 A / 5 A. The ratio error and phase displacement of the CTs under test obtained in this study are consistent with those measured at the national institutes in Canada and Germany using the same CTs under test within an expanded uncertainty (k = 2) in the overall current ratios.

The influences of equivalent viscous damping ratio determination on direct displacement-based design of un-bonded post-tensioned (UPT) concrete wall systems

  • Anqi, Gu;Shao-Dong, Shen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.627-637
    • /
    • 2022
  • Recent years, direct displacement-based design (DDBD) procedure is proposed for the design of un-bonded posttensioned (UPT) concrete wall systems. In the DDBD procedure, the determination of the equivalent viscous damping (EVD) ratio is critical since it would influence the strength demand of the UPT wall systems. Nevertheless, the influence of EVD ratio determination of the UPT wall systems were not thoroughly evaluated. This study was aimed to investigate the influence of different EVD ratio determinations on the DDBD procedure of UPT wall systems. Case study structures with four, twelve and twenty storeys have been designed with DDBD procedure considering different EVD ratio determinations. Nonlinear time history analysis was performed to validate the design results of those UPT wall systems. And the simulation results showed that the global responses of the case study structures were influenced by the EVD ratio determination.

An analytical model for displacement response spectrum considering the soil-resonance effect

  • Zhang, Haizhong;Zhao, Yan-Gang
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.373-386
    • /
    • 2022
  • The development of performance-based design methodologies requires a reasonable definition of a displacement-response spectrum. Although ground motions are known to be significantly affected by the resonant-like amplification behavior caused by multiple wave reflections within the surface soil, such a soil-resonance effect is seldom explicitly considered in current-displacement spectral models. In this study, an analytical approach is developed for the construction of displacement-response spectra by considering the soil-resonance effect. For this purpose, a simple and rational equation is proposed for the response spectral ratio at the site fundamental period (SRTg) to represent the soil-resonance effect based on wave multiple reflection theory. In addition, a bilinear model is adopted to construct the soil displacement-response spectra. The proposed model is verified by comparing its results with those obtained from actual observations and SHAKE analyses. The results show that the proposed model can lead to very good estimations of SRTg for harmonic incident seismic waves and lead to reasonable estimations of SRTg and soil displacement-response spectra for earthquakes with a relatively large magnitude, which are generally considered for seismic design, particularly in high-seismicity regions.

The Effect of the Loading Size on Displacements of Stiffened Plates with Open Ribs (재하 크기가 개단면 리브 보강판의 처짐에 미치는 영향)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • The objective of this study is to determine the effect of the loading size on displacements of stiffened plates with open ribs using the orthotropic rigidity ratio as the parameter. To analyze the displacement behavior of stiffened plates according to the loading size, a concentrated load and three types of uniform distributed loads were applied on the rib at the center of some plates. The results of the analysis of various stiffened plates show that the central displacement ratio of the distributed load to the concentrated load increased according to the decrease in the loading size, and that the ratio can be expressed as a function of the rigidity ratio for each rib space. The maximum displacement of the stiffened plate subjected to the distributed load did not appear at the center of the plate due to the local behavior, and the increasing ratio of the maximum displacement to the central displacement can be expressed as a function of the rigidity ratio for each rib space. Orthotropic plate analysis can achieve more accurate results using the proposed functions, and the application of the functions to examples of a different aspect ratio and support condition shows good accuracy. Therefore, using the functions proposed in this study, the central and maximum displacements can easily be achieved in the orthotropic plate analysis of stiffened plates subjected to the distributed load.

Ductility demand of partially self-centering structures under seismic loading: SDOF systems

  • Hu, Xiaobin;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.365-381
    • /
    • 2013
  • In this paper, a numerical simulation study was conducted on the seismic behavior and ductility demand of single-degree-of-freedom (SDOF) systems with partially self-centering hysteresis. Unlike fully self-centering systems, partially self-centering systems display noticeable residual displacement after unloading is completed. Such partially self-centering behavior has been observed in a number of recently researched self-centering structural systems with energy dissipation devices. It is thus of interest to examine the seismic performance such as ductility demand of partially self-centering systems. In this study, a modified flag-shaped hysteresis model with residual displacement is proposed to represent the hysteretic behavior of partially self-centering structural systems. A parametric study considering the effect of variations in post-yield stiffness ratio, energy dissipation coefficient, and residual displacement ratio on the displacement ductility demand of partially self-centering systems was conducted using a suite of 192 scaled ground motions. The results of this parametric study reveal that increasing the post-yield stiffness, energy dissipation coefficient or residual displacement ratio of the partially self-centering systems generally leads to reduced ductility demand, especially for systems with lower yield strength.

Analysis of belt behavior for a metal V-belt CVT (금속 V-벨트 CVT의 벨트거동 해석)

  • 김현수;이재신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.557-566
    • /
    • 1991
  • The metal V-belt behavior of a continuously variable transmission was investigated analytically and experimentally. Numerical results showed that nondimensional belt radial displacement increased in the radial inward direction for the driven pulley, while that of the driver pulley increased for the first 90 degrees of the active are and decreased with the increasing torque load. Experimental results for the belt radial displacement were in good agreement with the theoretical results. However, the absolute magnitude of the belt radial displacement was so small that the change in the belt displacement could not be measured in the experimental range except for the inlet region of the driven pulley, where the radial inward displacement was observed due to the effect of bending moment. The speed ratio-axial force relationship derived from the belt behavior analysis also showed god agreement with the experiment.

Effect of Reverse Cyclic Loading on the Fracture Resistance Curve of Nuclear Piping Material (역사이클하중이 원자력 배관재료의 파괴저항곡선에 미치는 영향)

  • Weon, Jong-Il;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1112-1119
    • /
    • 1999
  • Fracture resistance(J-R) curves, which are used for the elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to study the effect of reverse cyclic loading on J-R curves in CT specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio(R) and the other was the incremental plastic displacement(${\delta}_{cycle}/{\delta}_i$), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance test on CT specimens with varying load ratio and incremental plastic displacement were performed. For the SA 516 Gr. 70 steel, the results showed that the J-R curves were decreased with decreasing the load ratio and the incremental plastic displacement. When the load ratio was set to -1, the results of the J-R curves and the $J_i$ value were about $40{\sim}50$ percent of those for the monotonic loading condition. Also on condition that the incremental plastic displacement reached 1/40, the J-R curves and the $J_i$ value were about $50{\sim}60$ percent of those for the incremental plastic displacement of 1/10.