• Title/Summary/Keyword: Displacement Properties

Search Result 1,253, Processing Time 0.024 seconds

A Study on the Performance of Optical Fiber Displacement Sensor for Monitoring High Speed Spindle according to Properties of Optical Fiber (고속주축 모니터링용 광파이버 변위센서의 파이버 특성에 따른 센서 성능 연구)

  • 박찬규;신우철;배완성;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.385-389
    • /
    • 2003
  • To make high speed spindle system work properly, sensors with outstanding resolution and dynamic characteristics are essential. An optical fiber displacement sensor is based on simple principles. Electrical signal responds to the optical flux change due to the displacement change between a target and a sensor probe. In this paper, the performance of optical fiber displacement sensor has been investigated according to properties of optical fiber Firstly, optical loss has been measured before and after polishing optical fiber endface. Secondly, allowance of optical fiber bending has been tested. thirdly sensitivity and linear range of the sensor has been found out according to the shape of cross section of optical fiber.

  • PDF

Electrical properties and deposited films of Arachidic Acid (Arachidic Acid의 누독막(累讀膜)과 전기적특성(電氣的特性))

  • Cho, S.Y.;Chun, D.K.;Lee, K.S.;Lee, W.S.;Chung, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.215-217
    • /
    • 1996
  • We have examined the electrical properties of arachidic acid Langmuir(L)films by using a displacement-current-measuring technique with pressure stimulation, displacement current peak appeared at a area per molecule around $90{\AA}^2$, possibly due to the orientational change in hydrophobic part of arachidic acid molecules. The displacement current is the transient current, it is generated when charged particles existing in single monolayers are displaced with the external stimulation. In this report, we mainly describe the displacement current generation from arichidic acid monolayers with pressure stimulation.

  • PDF

Fabrication and Simulation of Displacement Properties of Ultrasonic Generator Handpiece (초음파 절삭기 핸드피스부 제작 및 변위 특성 시뮬레이션)

  • Kim, Seung-Won;Yoo, Ju-Hyun;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.152-155
    • /
    • 2018
  • Ultrasonic wave technologies have been widely used in ultrasonic washing machines, ultrasonic surgery, ultrasonic welding machines, ultrasonic sensors, and medical instruments. Ultrasonic surgery can be realized through the cavitation effect of ultrasonic waves. In this study, piezoelectric ceramics were manufactured to achieve the optimum design of a piezoelectric vibrator in a handheld generator for ultrasonic surgery. The best specimen showed the excellent piezoelectric properties of kp=0.624, Qm=1,531, and $d_{33}=356pC/N$. Numerical modeling based on the finite element method was performed to find the resonance frequency, the anti-resonance frequency, and the displacement properties of the handheld ultrasonic generator. Maximum displacement was observed in the six-step piezoelectric vibrator at $6.36{\mu}m$.

Cyclic behavior of superelastic shape memory alloys (SMAs) under various loading conditions

  • Hu, Jong Wan
    • Journal of Urban Science
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2018
  • The nickel-titanium shape memory alloy (SMA), referred to as Nitinol, exhibits a superelastic effect that can be restored to its original shape even if a significant amount of deformation is applied at room temperature, without any additional heat treatment after removal of the load. Owing to these unique material characteristics, it has widely used as displacement control devices for seismic retrofitting in civil engineering fields as well as medical, electrical, electronic and mechanical fields. Contrary to ordinarty carbon steel, superelastic SMAs are very resistant to fatigue, and have force-displacement properties depending on loading speed. The change for the mechanical properties of superelastic SMAs are experimentally inviestigated in this study when loading cycle numbers and loading speeds are different. In addition, the standardized force-displacement properties of such superelastic SMAs are proposed with an aim to efficiently design the seismic retrofitting devices made of these materials.

Determination of the mechanical properties of the coated layer in the sheet metal using load-displacement curve by nanoindentation technique (나노 인덴테이션의 하중-변위 곡선을 이용한 표면처리강판 코팅층의 기계적 특성 결정)

  • Ko Y. H.;Lee J. M.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • Mechanical properties such as Young's modulus and hardness of thin film in coated steel are difficult to determine by nano-indentation from the conventional analysis using the load-displacement curve. Therefore, an analysis of the nano-indentation loading curve was used to determine the Young's modulus, hardness and strain hardening exponent. A new method is recently being developed for plasticity properties of materials from nano-indentation. Elastic modulus of the thin films shows relatively small influence whereas yield strength and strain hardening are found to have significant effect on measured data. The load-displacement behavior of material tested with a Berkovich indenter and nano-indentation continuous stiffness method is used to measure the modulus and hardness through thin films.

  • PDF

A Study on the Tensile Property of Ring Specimen Having Gauge Length (평행부를 갖는 링 시험편의 인장특성 고찰)

  • Bae Bong-Kook;Koo Jae-Mean;Seok Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.555-562
    • /
    • 2005
  • In this study, we tried to establish the method of evaluating the tensile properties of the ring specimen of Arsene which have gauge length. In this result, we verified the availability of central piece. We made ring specimens and devices such as central piece, pins, and clevises. A proper tensile speed was determined by pre-test. The result of main test was calibrated and compared with the result of FEM. To obtain the tensile properties from the ring test result, we observed two relationships: one is strain-displacement and the other is load ratio-displacement. The tensile properties could be evaluated by using these relationships.

Physical Properties of Concrete with the Contents of CSA Expansive Admixture (CSA계 혼화재 치환율 병화에 따른 콘크리트의 물리적 성질)

  • Pei Chang Chun;Park Young Shin;Lee Mun Hwan;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.369-372
    • /
    • 2005
  • This study is about physical properties of concrete with changing displacement ratio of calcium sulfa aluminates(CSA) type admixture. Firstly, test shows that as displacement ratio of CSA increases and setting properties changes, fluidity and air contents decreases. In water to binder ratio 35$\%$ and 45$\%$, concrete using the cement replacing CSA 4$\%$ by volume shows that bleeding decreases 94.7$\%$ and 74.3$\%$ respectively, compared with plain concrete. In addition, setting time was promoted around 3 to 6 hour and 1 to 4 hour respectively. For harden concrete, increase of displacement ratio caused tendency of higher compressive strength as OPC has at early age. Replacing higher CSA admixture led to reduce of drying shrinkage.

  • PDF

Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test (저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구)

  • Hwang, Jae-Min;Go, Eun-Su;Jo, Hyun-Jun;Kim, In-Gul;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.813-820
    • /
    • 2021
  • In this study, a low-velocity impact test was performed to obtain the dynamic properties of solid propellants. The dynamic behavior of the solid propellant was examined by measuring the force and displacement of the impactor during the low-velocity impact test. The bending displacement was calculated by compensating for the local displacement caused by the low-velocity impact test in the form of three point bending and the shear displacement caused by using a short and thick solid propellant specimen. Stress and strain were calculated using compensated displacements and measured force, and dynamic properties of solid propellants were obtained from the stress-strain curve and compared with static bending test. The dynamic properties of solid propellant under the low-velocity impact loading at various operating temperature conditions such as room temperature(20 ℃), high temperature(63 ℃), and low temperature(-32 ℃) were compared and investigated.

In-vitro investigation of the mechanical friction properties of a computer-aided design and computer-aided manufacturing lingual bracket system under diverse tooth displacement condition

  • Kim, Do-Yoon;Ha, Sang-Woon;Cho, Il-Sik;Yang, Il-Hyung;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.2
    • /
    • pp.73-80
    • /
    • 2019
  • Objective: The purpose of this study was to compare the static (SFF) and kinetic frictional forces (KFF) of a computer-aided design and computer-aided manufacturing lingual bracket (CAD/CAM-LB) with those of conventional LB (Con-LB) and Con-LB with narrow bracket width (Con-LB-NBW) under 3 tooth displacement conditions. Methods: The samples were divided into 9 groups according to combinations of 3 LB types (CAD/CAM-LB [Incognito], Con-LB [7th Generation, 7G], and Con-LB-NBW [STb]) with 3 displacement conditions (no displacement [control], maxillary right lateral incisor with 1-mm palatal displacement [MXLI-PD], and maxillary right canine with 1-mm gingival displacement [MXC-GD]; n = 6/group). While drawing a 0.016-inch copper or super-elastic nickel-titanium archwire with 0.5 mm/min for 5 minutes in a chamber maintained at $36.5^{\circ}C$, SFF and KFF were measured. The Kruskal-Wallis method with Bonferroni correction was performed. Results: The Incognito group demonstrated the highest SFF, followed by the 7G and STb groups ([STb-control, STb-MXLI-PD, Stb-MXC-GD] < [7G-MXC-GD, 7G-MXLI-PD, 7G-control] < [Incognito-MXLI-PD, Incognito-control, Incognito-MXC-GD]; p < 0.001). However, there were no significant differences in SFF among the 3 displacement conditions within each bracket group. Within each displacement condition, the Incognito group demonstrated the highest KFF, followed by the 7G and STb groups ([STb-control, STb-MXLI-PD] < Stb-MXC-GD < 7G-MXLI-PD < [7G-control, 7G-MXC-GD] < [7G-MXC-GD, Incognito-MXLI-PD, Incognito-control] < [Incognito-control, Incognito-MXC-GD]; p < 0.001). MXC-GD exhibited higher KFFs than MXLI-PD in the same bracket group. Conclusions: The slot design and ligation method of the CAD/CAM-LB system should be modified to reduce SFF and KFF during the leveling/alignment stage.