• Title/Summary/Keyword: Dispersion of hydrogen

Search Result 167, Processing Time 0.021 seconds

The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere (공기 및 수소 분위기에서 열처리 된 Pt/Al2O3 촉매의 HI분해반응 특성)

  • Park, Eun Jung;Ko, Yun Ki;Park, Chu Sik;Kim, Chang Hee;Kang, Kyoung Soo;Cho, Won Chul;Jeong, Seong Uk;Bae, Ki Kwang;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In HI decomposition, $Pt/Al_2O_3$ has been studied by several researchers. However, after HI decomposition, it could be seen that metal dispersion of $Pt/Al_2O_3$ was greatly decreased. This reason was expected of platinum loss and sintering, which platinum was aggregated. Also, this decrease of metal dispersion caused catalytic deactivation. This study was conducted to find the condition to minimize platinum sintering and loss. In particular, heat treatment atmosphere and temperature were examined to improve the activity of HI decomposition reaction. First of all, although $Pt/Al_2O_3$ treated in hydrogen atmosphere had low platinum dispersion between 13 and 18%, it was shown to suitable platinum form that played an important role in improving HI decomposition reaction. Oxygen in the air atmosphere made $Pt/Al_2O_3$ have high platinum dispersion even 61.52% at $500^{\circ}C$. Therefore, in order to get high platinum dispersion and suitable platinum form in HI decomposition reaction, air heat treatment at $500^{\circ}C$ was needed to add before hydrogen heat treatment. In case of 5A3H, it had 51.13% platinum dispersion and improved HI decomposition reaction activity. Also, after HI decomposition reaction it had considerable platinum dispersion of 23.89%.

A Study on the Dispersion of Hydrogen Gas in Atmosphere (대기 중 수소가스의 확산거동에 관한 연구)

  • Ahn Bum Jong;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.1 s.26
    • /
    • pp.9-15
    • /
    • 2005
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. Therefore, there is a considerable demand for further research concerning the dispersion of hydrogen/air mixture clouds and the possible consequences of their ignition. In this study, the dispersion of hydrogen gas in atmosphere has been analysed with atmospheric condition by concerning the buoyancy of hydrogen. The hazard ranges to wind direction increase with wind speed and the stability of atmosphere. The concentration of hydrogen at just above ground is nearly zero due to buoyancy of hydrogen gas. Therefore, the ignition probability of hydrogen gas cloud is low and the hazard of explosion or fire associated with hydrogen gas is relatively low comparing with the other fuel gas such as propane or butane.

  • PDF

Dispersion Simulation of Hydrogen in Simple-shaped Offshore Plant (단순 형상 해양플랜트 내의 수소의 분산 시뮬레이션)

  • Seok, Jun;Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.105-114
    • /
    • 2013
  • Lots of orders of special vessels and offshore plants for developing the resources in deepwater have been increased in recent. Because the most of accidents on those structures are caused by fire and explosion, many researchers have been investigated quantitatively to predict the cause and effect of fire and explosion based on both experiments and numerical simulations. The first step of the evaluation procedures leading to fire and explosion is to predict the dispersion of flammable or toxic material, in which the released material mixes with surrounding air and be diluted. In particular turbulent mixing, but density differences due to molecular weight or temperature as well as diffusion will contribute to the mixing. In the present paper, the numerical simulation of hydrogen dispersion inside a simple-shaped offshore structure was performed using a commercial CFD program, ANSYS-CFX. The simulated results for concentration of released hydrogen are compared to those of experiment and other simulation in Jordan et al.(2007). As a result, it is seen that the present simulation results are closer to the experiments than other simulation ones. Also it seems that the hydrogen dispersion is closely related to turbulent mixing and the selection of the turbulence model properly is significantly of importance to the reproduction of dispersion phenomena.

Preparation of Highly Dispersed Ru/$\alpha-Al_2O_3$ Catalyst for Preferential CO Oxidation (선택적 CO 산화 반응을 위한 Ru/$\alpha-Al_2O_3$ 촉매 고분산 제조 방법에 관한 연구)

  • Eom, Hyun-Ji;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.390-397
    • /
    • 2010
  • 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts are prepared by deposition-precipitation method for the preferential CO oxidation In order to investigate the effect of pH on the Ru dispersion and particle size, the pH of precursor solution is adjusted to between 5.5 and 9.5. 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH of 6.5 has high Ru dispersion of 17.9% and small particle size of 7.7nm. In addition, 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared at the pH 6.5 is easily reduced at low temperatures below $150^{\circ}C$ due to high dispersion of $RuO_2$ particle and shows high CO conversion over 90% in the wide temperature range between $100^{\circ}C$ and $160^{\circ}C$. Moreover, the deposition-precipitation is a feasible method to improve the Ru dispersion as compared to the impregnation method. The 0.5wt% Ru/$\alpha-Al_2O_3$ catalyst prepared by deposition-precipitation exhibits higher CO conversion than 0.5wt% Ru/$\alpha-Al_2O_3$ catalysts prepared by impregnation due to higher metal dispersion and better reducibility at low temperature.

A Study on Characteristics of HI Decomposition Using Pt Catalysts on ZrO2-SiO2 Mixed Oxide (ZrO2-SiO2 복합산화물에 담지된 백금 촉매의 요오드화수소 분해 특성 연구)

  • Ko, Yunki;Park, Eunjung;Bae, Kikwang;Park, Chusik;Kang, Kyoungsoo;Cho, Wonchul;Jeong, Seonguk;Kim, Changhee;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • This work is investigated for the catalytic decomposition of hydrogen iodide (HI). Platinum was used as active material by loading on $ZrO_2-SiO_2$ mixed oxide in HI decomposition reaction. To obtain high and stable conversion of hydrogen iodide in severe condition, it was required to improve catalytic activity. For this reason, a method increasing dispersion of platinum was proposed in this study. In order to get high dispersion of platinum, zirconia was incorporated in silica by sol-gel synthesis. Incorporating zirconia influence increasing platinum dispersion and BET surface area as well as decreasing deactivation of catalysts. It should be able to stably product hydrogen for a long time because of inhibitive deactivation. HI decomposition reaction was carried out under the condition of $450^{\circ}C$ and 1 atm in a fixed bed reactor. Catalysts analysis methods such as $N_2$ adsorption/desorption analysis, X-ray diffraction, X-ray fluorescence, ICP-AES and CO gas chemisorption were used to measurement of their physico-chemical properties.

A Study on Preferential CO Oxidation over Supported Pt Catalysts to Produce High Purity Hydrogen (고순도 수소 생산을 위한 CO 선택적 산화 반응용 Pt 촉매 연구)

  • Jeon, Kyung-Won;Jeong, Dae-Woon;Jang, Won-Jun;Na, Hyun-Suk;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.353-358
    • /
    • 2013
  • To develop preferential CO oxidation reaction (PROX) catalyst for small scale hydrogen generation system, supported Pt catalysts have been applied for the target reaction. The supports were systematically changed to optimize supported Pt catalysts. $Pt/Al_2O_3$ catalyst showed the highest CO conversion among the catalysts tested in this study. This is due to easier reducibility, the highest dispersion, and smallest particle diameter of $Pt/Al_2O_3$. It has been found that the catalytic performance of supported Pt catalysts for PROX depends strongly on the reduction property and depends partly on the Pt dispersion of supported Pt catalysts. Thus, $Pt/Al_2O_3$ can be a promising catalyst for PROX for small scale hydrogen generation system.

Hydrogen Adsorption of Acid-treated Multi-walled Carbon Nanotubes at Low Temperature

  • Lee, Seul-Yi;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1596-1600
    • /
    • 2010
  • Surface functionalization of multi-walled carbon nanotubes (MWNTs) was carried out by means of acid treatment. The presence of oxygen functional groups on the surface of acid-treated MWNTs was confirmed with the aid of Fourier transform infrared spectroscopy and X-ray spectroscopy. In addition, carboxylic groups generally formed on the surface of acid-treated MWNTs, and the dispersion was increased by the duration of the acid treatment. The zeta-potential indicated the surface charge transfer and the dispersion of MWMTs. Morphological characteristics of acid-treated MWNTs were also observed using a transmission electron microscopy, X-ray diffraction, and Raman analysis, which was revealed the significantly unchanged morphologies of MWNTs by acid treatment. The hydrogen adsorption capacity of the MWNTs was evaluated by means of adsorption isotherms at 77 K/1 atm. The hydrogen storage capacity was dependent upon the acid treatment conditions and the formation of oxygen functional groups on the MWNT surfaces. The latter have an important effect on the hydrogen storage capacity.

Large Eddy Simulation for the Prediction of Unsteady Dispersion Behavior of Hydrogen Fluoride (불산의 비정상 확산거동 예측을 위한 대와동모사)

  • Ko, M.W.;Oh, Chang Bo;Han, Y.S.;Choi, B.I.;Do, K.H.;Kim, M.B.;Kim, T.H.
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.14-20
    • /
    • 2015
  • A Large Eddy Simulation(LES) was performed for the prediction of unsteady dispersion behavior of hydrogen fluoride (HF). The HF leakage accident occurred at the Gumi fourth industrial complex was numerically investigated using the Fire Dynamics Simulator (FDS) based on the LES. The accident area was modeled three-dimensionally and time-varying boundary conditions for wind were adopted in the simulation for considering the realistic accident conditions. The Message Passing Interface (MPI) parallel computation technique was used to reduce the computational time. As a result, it was found that the present LES simulation could predict the unsteady dispersion features of HF near the accident area effectively. The dispersion behaviors of the leaked HF was much affected by the unsteady wind direction. The LES could predict the time variation of the HF concentration reasonably and give an useful information for the risk analysis while the prediction with the time-averaging concept of HF concentration had a limitation for the amount of HF concentration at specific location point. It was identified that the LES is very useful to predict the dispersion characteristics of hazardous chemicals.

Analyzing Effective Factors on Hydrogen Release Based on Response Surface Method and Analysis of Variance (반응표면법과 ANOVA 기반의 수소 누출에 대한 유효인자 분석)

  • JUNSEO LEE;SEHYEON OH;SEUNGHYO AN;EUNHEE KIM;BYUNGCHOL MA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.712-721
    • /
    • 2023
  • While hydrogen is widely used, it has a low minimum ignition energy, raising safety concerns when using it. This research studied which parameters are the key variables in the hydrogen release and diffusion. These parameters were divided into six process variables in the initial release and two environmental variables in the dispersion. One hundred and twenty cases were selected through design of experiment, and the end-point in each case were analyzed using PHAST. Afterwards, an end-point prediction model was developed using RSM and ANOVA, and the impact of each variable on the endpoint was analyzed. As a result, the influence of eight variables was graded. The nozzle diameter had the greatest influence on the end-point, while the pipe roughness coefficient had no effect on the end-point. It is expected that these results will be used as basic data to improve safety across all fields of hydrogen handling facilities.

Dispersion and Stability of Platinum Catalysts Supported on Titania-, Vanadia-, Zirconia- and Ceria-Incorporated Silicas (티타니아, 바나디아, 지르코니아, 세리아를 고정한 실리카에 담지된 백금 촉매의 분산성과 안정성)

  • Kim, Mi-Young;Seo, Gon;Park, Jung-Hyun;Shin, Chae-Ho;Kim, Eun-Seok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Platinum catalysts were prepared by impregnating platinum precursor on titania-, vanadia-, zirconia- and ceria-incorporated silicas followed by hydrogen peroxide treatment. The effects of the oxide incorporation and the hydrogen peroxide treatment in the preparation of the platinum catalysts on their platinum dispersion and catalytic activity in carbon monoxide oxidation were investigated. XRD, TEM, EXAFS, XPS and carbon monoxide chemisorption studies confirmed the high dispersion of platinum even on silica by the oxide incorporation and hydrogen peroxide treatment. However, the type of oxides incorporated on silica caused considerable variances in the adsorption and the catalytic activity in the oxidation of carbon monoxide on them. The incorporation of titania, zirconia and ceria on silica and further hydrogen peroxide treatment enhanced the platinum dispersion, resulting in the improved catalytic activities. Among the catalysts supported on the oxide-incorporated silicas, the platinum catalyst supported on zirconia-incorporated silica exhibited the highest activity because of the highest platinum dispersion due to the formation of Pt-O-Zr bonds.