• Title/Summary/Keyword: Dispersion number

Search Result 482, Processing Time 0.026 seconds

Surface-attached Solid Dispersion

  • Park, Young-Joon;Oh, Dong-Hoon;Yan, Yi-Dong;Seo, Yoon-Gee;Lee, Sung-Neug;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.97-102
    • /
    • 2010
  • A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile) (라그란지안 입자확산모델개발(농도 계산방법의 검토))

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

Polymer Adsorption and fiber Dispersion Stability of a Paper Stock Colloidal Suspension with a PAC-PAE Dual Polymer System (PAC-PAE 2중 고분자 내첨 지료의 고분자 흡착 및 교질 분산계의 안정성 연구)

  • 윤성훈;김태영;김덕기;송병규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The adsorption of co-cationic dual polymer system was investigated as was the fiber dispersion stability of a paper stock suspension. Polyaluminum chloride(PAC) and polyamidoamine epichlorohy-drin(PAE) polymers were used as wet-end additives. The adsorbed amounts of PAE polymer in a wet stock were measured by using polyelectrolytic PCD titration. The sheet forming experiments were carried out in a standard handsheet machine. Fiber dispersion stability and relative retention were evaluated in terms of M/K non-uniformity index and sheet basis weight, respectively. The PAE polymer adsorption of Langmuir-isothermal type decreased with increasing PAC addition level. The combination of the two cationic polymers presumably exerts a site-blocking effect by the low molecular weight PAC which gives a partial charge neutralization at a minimum level of addition. From a thermodynamic view point of PAE adsorption, an increase in adsorption entropy and a decrease in train number suggests that the PAR polymer has an extended conformation structure that potentially leads to an enhancement of the fiber dispersion stability. This conclusion is supported by handsheet experiments that examined the PAC-PAE dual polymer effects on the sheet formation and retention.

Electron Microburst Energy Dispersion Calculated by Test Particle Simulation

  • Lee, Jae-Jin;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • Electron microbursts, energetic electron precipitation having duration less than 1 sec, have been thought to be generated by chorus wave and electron interactions. While the coincidence of chorus and microburst occurrence supports the wave-particle interaction theory, more crucial evidences have not been observed to explain the origin of microbursts. We propose the measurement of energy dispersion of microbursts could be an evidence supporting wave-particle theory. During chorus waves propagate along magnetic field, the resonance condition should be satisfied at different magnetic latitude for different energy electrons. If we observed electron microbursts at low altitude, the arrival time of different energy electrons should make unique dispersion structures. In order to observe such energy dispersion, we need a detector having fast time resolution and wide energy range. Our study is motivated from defining the time resolution and energy range of the detectors required to measure microburst energy dispersions. We performed test particles simulation to investigate how electrons interact with simple coherent waves like chorus waves. We compute a large number of electron's trajectories and successfully produce energy dispersion structures expected when microbursts are observed with 10 msec time resolution detectors at the altitude of 600 km. These results provide useful information in designing electron detectors for the future mission.

  • PDF

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Spore Dispersion of Tricholoma matsutake at a Pinus densiflora Stand in Korea

  • Park, Hyun;Ka, Kang-Hyeon
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.203-205
    • /
    • 2010
  • The spore of Tricholoma matsutake is considered to be the starting point of the mushroom growth cycle, but the mechanism of mycelial development from the spore stage is not yet clarified. In this study, we tried to measure how far the spores of T. matsutake disperse from a fruiting body located at a Pinus densiflora stand in Korea. We established 16 slide glasses coated with glycerin near a fruiting body in four directions separated by four different distance intervals within a mushroom productive stand after removing all other fruiting bodies from three plots. The number of dispersed spores increased with time from the first day (475 $spores/cm^2$) to the fourth day (836 $spores/cm^2$) after the pileus opened. The number of spores dispersed downward was about 1.5 times greater than that dispersed toward the ride. The number of dispersed spores decreased exponentially as the distance from each fruiting body increased. More than 95% of the spores dropped within a meter from the fruiting body, with 75% dropping within 0.5 m. Even so, the number of spores dispersed over 5 m from the fruiting body was more than 50 million when considering the total number of spores produced by a fruiting body is about 5 billion.

An Effect of Heat Input on Thermal Storage for Horizontal Thermal Storage Tank with Heat pipe (열 파이프용 수평 축열조에서의 열 입력이 축열에 미치는 영향)

  • 최우석;박이동;김철주;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.69-76
    • /
    • 1995
  • The horizontal thermal storage tank with heat pipe which is suitable for the sensible heat storage system is able to store a hot water from the heat source such as heating pad efficiently and to supply a hot water to load rapidly. Therefore Arrangement of heating pad affects thermal flow and thermal storage efficiency. So, if effective arrangement is decided for condition of constant number of heating pad, the more rapid thermal flow effect and higher thermal storage efficiency is obtainable by active heat transfer. In this experiments, number of heating pad is ranged from three, five and nine, and when number of heating pad is constant, arrangement are two types of concentration-type and dispersion-type. As a result, for the case of concentration-type of heating pad, strong entrainment take place in horizontal thermal storage tank with heat pipe by active heat transfer and in the constant number of heating pad, the concentration-type has the higher efficiency with about 5∼6% than the dispersion-type. Therefore, when heating pad is equipted to horizontal thermal storage tank with heat pipe, concentration-type of heating pad is an efficient design in constant number. of heating pad.

  • PDF

Validation of the Long-Range Atmospheric Dispersion Model (장거리 대기 확산모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • A long-range atmospheric dispersion model named LADAS has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The developed numerical model for validation was compared with the results of the ETEX which is the long-range field tracer experiment. As a comparative study, the calculated concentration distributions agreed well in the case of the usage of the mixing heights calculated by the Richardson number than the usage of the constant mixing heights in LADAS model. Also, the calculated concentrations agreed with the time series of the measured ones at some sampling points.

Comparison of the Results of Finite Difference Method in One-Dimensional Advection-Dispersion Equation (유한차분 모형에 의한 일차원 이송-확산방정식 계산결과의 비교)

  • 이희영;이재철
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.125-136
    • /
    • 1995
  • ELM, a characteristic line based method, was applied to advection-dispersion equation, and the results obtained were compared with those of Eulerian schemes(Stone-Brian and QUICKEST). The calculation methods consisted of Lagrangian interpolation scheme and cubic spline interpolation scheme for the advection calculation, and the Crank-Nicholson scheme for the dispersion calculation. The results of numerical methods were as follows: (1) for Gaussian hill: ELM, using Lagrangian interpolation scheme, gave the most accurate computational result, ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical damping for Peclet number 50. Stone-Brian scheme gave phase shift introduced in the numerical solution for Peclet number 10 and 50. (2) for advanced front: All schemes gave accurate computational results for Peclet number 1 and 4. ELM, Lagrangian interpolation scheme, and Stone,Brian scheme gave dissipation error and ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical oscillation for Peclet number 50.

  • PDF

Effects of Cylinder Rotation on Particle Laden Flow and Particle Deposition on a Rotating Circular Cylinder (실린더의 회전이 원형 실린더 주위의 입자 부유 유동 및 입자 부착에 미치는 영향)

  • Lee, Seungwoo;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.239-248
    • /
    • 2017
  • It is important to understand the dispersion and deposition characteristics of particles in the flow around a circular cylinder. The rotation of a cylinder is considered as a means to modify the particle deposition in this study. We numerically investigate the effects of the rotational speed of a cylinder and the particle Stokes number on particle dispersion and deposition as well as flow characteristics. Results show that the deposition efficiency of small particles (with the Stokes number smaller than 4) decreases significantly as the rotational speed increases. However, when the Stokes number is larger than 4, the deposition efficiency increases slightly with the rotational speed of the cylinder. Meanwhile, for a given rotational speed, the increase in the Stokes number leads to an increase in deposition efficiency and deposited area.