• Title/Summary/Keyword: Dispersion analysis

Search Result 1,423, Processing Time 0.028 seconds

Refractive index change of nonlinear polymer thin films induced by corona poling and quantitative evaluation of poling effect (코로나 극성배향이 비선형 고분자박막의 복소굴절율에 미치는 영향 및 배향효과의 정량화)

  • 길현옥;김상준;방현용;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.181-187
    • /
    • 1999
  • We prepared the side-chain type nonlinear optical NPP(N-(6-nitrophenyl)-(L)-prolinol) polymer films by spin coating method. Ellipsometric spectra were in situ collected by using spectroscopic phase modulated ellipsometer while the NPP polymer films were being corona poled at the temperature above glass transition. We calculated film thickness and the refractive index dispersion by modeling the spectro-ellipsometry data in transparent region. We also calculated the refractive index and the extinction coefficient of the polymer films by numerically inverting the spectro-ellipsometry data in absorbing region, while the previously determined film thickness was used. The independently determined extinction coefficient spectra from the analysis of transmission spectra were compared with those by spectro-ellipsometry and they showed an excellent agreement with each other. From the analysis of the complex refractive index change of the NPP polymer thin films induced by the corona poling, we could determine the vertical complex refractive index and the horizontal complex refractive index separately. Using the volume fraction of the vertical component f⊥, the degree of poling of poled NPP polymer films was quantitatively addressed. It is suggested that the present method can be used to quantitatively address the degree of poling in an absolute manner and to depth profile the poled fraction of thick polymer films. It will be useful to understand the structural change of polymer films and hence the poling mechanism during the poling process.

  • PDF

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

The Effects of Supplementary Education Awareness on Interpersonal Communication for Health Care Providers (종합병원 의료인의 교육훈련 인식이 의료인 상호간 커뮤니케이션에 미치는 영향)

  • Jung, Sang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.411-420
    • /
    • 2018
  • This study was conducted to identify the effects of interpersonal communication between health care providers after receiving supplementary education. The participants of this study were 433 health care providers who work at 29 general hospitals in Gwangju Metropolitan City and Jeollanamdo Province. Data were collected from June 8 to June 25, 2018 and evaluated by t-tests, dispersion analysis, correlation analysis and stepwise regression. The results were produced by investigating interpersonal communications according to socio-demographic and health-related characteristics including age, education level, bed size of the hospital at which the participant worked, job satisfaction, hospital location, personal health status, experience with health care management and experience with depression. There were significant differences in communication observed according to supplemental education awareness regarding age, bed size of hospital, occupation, wage, type of medical institution of employment, job satisfaction, work location, health status, health care education experience and chronic disease. There were positive correlations between supplemental education awareness in health workers and their interpersonal communication. The factors that had positive effects on interpersonal communication were level of education and health-related education experience, while age, hospital bed size and job dissatisfaction had negative effects. Finally, support environment, learning transfer and results were identified as sub-factors of supplemental education. Based on the results above, it was proposed that educational training to enhance results, provide a supportive environment and foster learning transfer be developed to increase communication between health workers and provide a safe health service for patients.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

Measurement of Bubble Size in Flotation Column using Image Analysis System (이미지 분석시스템을 이용한 부선컬럼에서 기포크기의 측정)

  • An, Ki-Seon;Jeon, Ho-Seok;Park, Chul-Hyun
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.104-113
    • /
    • 2020
  • Bubble size in froth flotation has long been recognized as a key factor which affects the bubble residence time, the bubble surface area flux (Sb) and the carrying rate (Cr). This paper presents method of bubble size measurement, relationship between operating variables and gas dispersion properties in flotation column. Using high speed camera and image analysis system, bubble size has been directly measured as a function of operating parameters (e.g., superficial gas rate (Jg), superficial wash water rate (Jw), frother concentration) in flotation column. Relationship compared to measured and estimated bubble size was obtained within error ranges of ±15~20% and mean bubble size was 0.718mm. From this system the empirical relationship to control the bubble size and distribution has been developed under operating conditions such as Jg of 0.65~1.3cm/s, Jw of 0.13~0.52cm/s and frother concentration of 60~200ppm. Surface tension and bubble size decreased as frother concentration increased. It seemed that critical coalescence concentration (CCC) of bubbles was 200ppm so that surface tension was the lowest (49.24mN/m) at frother concentration of 200ppm. Bubble size tend to increase when superficial gas rate (Jg) decreases and superficial wash water rate Jw and frother concentration increase. Gas holdup is proportional to superficial gas rate as well as frother concentration and superficial wash water rate (at the fixed superficial gas rate).

The Analysis of fragmentation on the Jirisan National Park for the Improvement of Asiatic Black Bear's habitat environment (반달가슴곰 서식환경 개선을 위한 지리산 국립공원 파편화 분석)

  • Bae, Je-Sun;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Ministry of Environment of Korea has been releasing Asiatic black bears since 2004 at Jirisan National Park. It exceeded the target number of Asiatic black bears in 2018. As of July 2020, in addition to 67 traceable bears, many Asiatic black bears are dispersed outside Jirisan National Park. Jirisan National Park is a very dense place with more than 3 million visitors every year. In this study, the roads and trails through Jirisan National Park were considered to be the main dispersion factors of Asiatic black bears, and the fragmentation analysis was conducted. As of July 2017, the length of roads and trails in Jirisan National Park was 363.4km. Based on this, Jirisan National Park was fragmented into 163 patches. There is only one place that maintains a single area of more than 50㎢ that is suitable for large mammals to inhabit, and 141 places are less than 5㎢. There are 6 patches of 24 to 200㎢ area suitable for living of large mammals including Asiatic black bears, in Jirisan National Park. Compared to the announcement made by the Korea National Park Service in 2014, activities of Asiatic black bears were rare in areas below 5㎢ area and the frequency of activities was high in more than 20㎢ area. This shows that human activities in protected areas such as national parks can directly affect the activities of wild animals, including Asiatic black bears. Therefore, efforts should be made to improve the habitat of Asiatic black bears by reducing the pressure of visiting for Jirisan National Park. In addition, as a result of analyzing the fragmentation of the park's natural conservation zone 107.7km, 45% of the trail of Jirisan National Park, was opened, which is more fragmentation than other use zones. The park nature conservation zone accounts for about 32% of the total area of Jirisan National Park, but the average patch area is only 2.93㎢ and seven large shelters are located. Therefore the Asiatic black bears are negatively affected. This is the result of inconsistent national park use zone setting and actual park management. In overseas countries, research is active on the negative effects of human activity on ecosystems in protected areas. However, there is a lack of research of that in Korea. Thus, that research is required for protection area management in the future.

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.

A Study on the Application of Machine Learning in Literary Texts - Focusing on Rule Selection for Speaker Directive Analysis - (문학 텍스트의 머신러닝 활용방안 연구 - 화자 지시어 분석을 위한 규칙 선별을 중심으로 -)

  • Kwon, Kyoungah;Ko, Ilju;Lee, Insung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-323
    • /
    • 2021
  • The purpose of this study is to propose rules that can identify the speaker referred by the speaker directive in the text for the realization of a machine learning-based virtual character using a literary text. Through previous studies, we found that when applying literary texts to machine learning, the machine did not properly discriminate the speaker without any specific rules for the analysis of speaker directives such as other names, nicknames, pronouns, and so on. As a way to solve this problem, this study proposes 'nine rules for finding a speaker indicated by speaker directives (including pronouns)': location, distance, pronouns, preparatory subject/preparatory object, quotations, number of speakers, non-characters directives, word compound form, dispersion of speaker names. In order to utilize characters within a literary text as virtual ones, the learning text must be presented in a machine-comprehensible way. We expect that the rules suggested in this study will reduce trial and error that may occur when using literary texts for machine learning, and enable smooth learning to produce qualitatively excellent learning results.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Effect of Pt as a Promoter in Decomposition of CH4 to Hydrogen over Pt(1)-Fe(30)/MCM-41 Catalyst (Pt(1)-Fe(30)/MCM-41 촉매상에서 수소 제조를 위한 메탄의 분해 반응에서 조촉매 Pt의 효과)

  • Ho Joon Seo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.674-678
    • /
    • 2023
  • The effect of Pt was investigated to the catalytic methane decomposition of CH4 to H2 over Pt(1)-Fe(30)/MCM-41 and Fe(30)/MCM-41 using a fixed bed flow reactor under atmosphere. The Fe2O3 and Pt crystal phase behavior of fresh Pt(1)-Fe(30)/MCM-41 were obtained via XRD analysis. SEM, EDS analysis, and mapping were performed to show the uniformed distribution of nano particles such as Fe, Pt, Si, O on the catalyst surface. XPS results showed O2-, O- species and metal ions such as Pt0, Pt2+, Pt4+, Ft0, Fe2+, Fe3+ etc. When 1 wt% of Pt was added to Fe(30)/MCM-41, automic percentage of Fe2p increased from 13.39% to 16.14%, and Pt4f was 1.51%. The yield of hydrogen over Pt(1)-Fe(30)/MCM-41 was 3.2 times higher than Fe(30)/MCM-41. The spillover effect of H2 from Pt to Fe increased the reduction of Fe particles and moderate interaction of Fe, Pt and MCM-41 increased the uniform dispersion of fine nanoparticles on the catalyst surface, and improved hydrogen yield.