• Title/Summary/Keyword: Disparity map

Search Result 207, Processing Time 0.025 seconds

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

Integrated Color Matching in Stereoscopic Image by Combining Local and Global Color Compensation (지역과 전역적인 색보정을 결합한 스테레오 영상에서의 색 일치)

  • Shu, Ran;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.168-175
    • /
    • 2013
  • Color consistency in stereoscopic contents is important for 3D display systems. Even with a stereo camera of the same model and with the same hardware settings, complex color discrepancies occur when acquiring high quality stereo images. In this paper, we propose an integrated color matching method that use cumulative histogram in global matching and estimated 3D-distance for the stage of local matching. The distance between the current pixel and the target local region is computed using depth information and the spatial distance in the 2D image plane. The 3D-distance is then used to determine the similarity between the current pixel and the target local region. The overall algorithm is described as follow; First, the cumulative histogram matching is introduced for reducing global color discrepancies. Then, the proposed local color matching is established for reducing local discrepancies. Finally, a weight-based combination of global and local matching is computed. Experimental results show the proposed algorithm has improved global and local error correction performance for stereoscopic contents with respect to other approaches.

Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image (무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구)

  • Rhee, Sooahm;Kim, Han-gyeol;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1025-1034
    • /
    • 2022
  • In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

The study of stereoscopic editing process with applying depth information (깊이정보를 활용한 입체 편집 프로세스 연구)

  • Baek, Kwang-Ho;Kim, Min-Seo;Han, Myung-Hee
    • Journal of Digital Contents Society
    • /
    • v.13 no.2
    • /
    • pp.225-233
    • /
    • 2012
  • The 3D stereoscopic image contents have been emerging as the blue chip of the contents market of the next generation since the . However, all the 3D contents created commercially in the country have failed to enter box office. It is because the quality of Korean 3D contents is much lower than that of overseas contents and also current 3D post production process is based on 2D. Considering all these facts, the 3D editing process has connection with the quality of contents. The current 3D editing processes of the production case of are using the way that edits with the system on basis of 2D, followed by checking with 3D display system and modifying, if there are any problems. In order to improve those conditions, I suggest that the 3D editing process contain more objectivity by visualizing the depth data applied in some composition work such as Disparity map, Depth map, and the current 3D editing process. The proposed process has been used in the music drama , comparing with those of the film . The 3D values could be checked among cuts which have been changed a lot since those of , while the 3D value of drew an equal result in general. Since the current process is based on an artist's subjective sense of 3D, it could be changed according to the condition and state of the artist. Furthermore, it is impossible for us to predict the positive range, so it is apprehended that the cubic effect of space might be perverted by showing each different 3D value according to cuts in the same space or a limited space. On the other hand, the objective 3D editing by applying the visualization of depth data can adjust itself to the cubic effect of the same space and the whole content equally, which will enrich the 3D contents. It will even be able to solve some problems such as distortion of cubic effect and visual fatigue, etc.