• Title/Summary/Keyword: Dislocation Glide

Search Result 32, Processing Time 0.016 seconds

On the Properties and Intersection Feature of the Ductile Shear Zone (Chonju shear zone) near Yongkwang-Eub (영광(靈光) 부근(附近) 연성전단대(延性剪斷帶)(전주전단대(全州剪斷帶))의 성질(性質)과 교차양상(交叉樣相)에 관(關)하여)

  • Jeon, Kyeong Seok;Chang, Tae Woo;Lee, Byung Joo
    • Economic and Environmental Geology
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 1991
  • Ductile shear zones developed in Jurassic granites in the Yonggwang area show NE trend at the eastern part and nearly EW trend at the western part, respectively. Judged from shear sense indicators, they have resulted from dextral strike-slip movement. The intersection of both trends is thought to be due to the truncation and offset of NE shear zone Chonju Shear zone by the brittle Yonggwang fault which runs in near EW direction with sinistral movement sense. The simple shear deformation was predominate through the deformation in this ductile shear zone. Based on this deformation mechanism, the shear strain (${\gamma}$) estimated in domain 1 increases from 0.14 at the shear zone margin to 9.41 toward the center of shear zone. Total displacement obtained only from this measured section(JK 59 to JK14) appecars to be 1434.5 meters. The sequential development of microstructures can be divided into three stages; weakly-foliated, well-foliated and banded-foliated stages. In the weakly-foliated stage dislocation glide mechanism might be predominant. In the well-foliated stage grain boundary migration and progressive misorientation of subgrains was remarkable during dynamic recovery and recrystallization. In the banded-foliated stage grain boundary sliding and microfracturing mechanisms accompanied with crushing and cracking were marked. According to strain analysis from quartzites of the metasedimentary rocks, strain intensity (${\gamma}$) of the samples within the ductile shear zone ranges from 2.7 to 5.7, while that of the samples out of the ductile shear zone appears to be about 1.7.

  • PDF

Studies on the Development of TiAIN/CrN Multi-layered Thin Films by Unbalanced Magnetron Sputtering Process (비대칭 스퍼터링에 의한 TiAIN/CrN 나노 다층 박막의 합성 및 특성 분석에 관한 연구)

  • Kim, Gwang-Seok;Kim, Bom-Sok;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.207-211
    • /
    • 2005
  • In this work a multi-layered nanostructured TiAIN/CrN superlattice coatings was synthesized using closed-field unbalanced magnetron sputtering method and the relationships between their superlattice period (1), micro-structure, hardness and elastic modulus were investigated. In addition, wear test at $500^{\circ}C$ and oxidation resistance test at $900^{\circ}C$ were performed to investigate high temperature properties of these thin films. The coatings were characterized in terms of microstructure and mechanical properties by transmission electron microscopy (TEM) and nano-indentation test. Results from TEM analysis showed that superlattice periods was inversely proportional to the jig rotation speed. The maximum hardness and elastic modulus of 37 GPa and 375 GPa were observed at superalttice period of 6.1 nm and 4.4 nm, respectively. An higher value of microhardness from TiAIN/CrN thin films than either TiAIN (30 GPa) or CrN (26 GPa) was noted while the elastic modulus was approximately an average of TiAIN and CrN films. These enhancement effects in superlattice films could be attributed to the resistance to dislocation glide across interface between the CrN and TiAIN layers. Much improved plastic deformation resistance ($H^3/E^2$) of 0.36 from TiAIN/CrN coatings was observed, compared with 0.15 and 0.16 from TiAIN and CrN, respectively. Also the wear resistance at $500^{\circ}C$ was largely increased than those of single TiAIN and CrN coatings and TiAIN/CrN coatings showed much reduced weight gain after exposure at $900^{\circ}C$ for 20 hours.