• Title/Summary/Keyword: Dislocation Formation

Search Result 88, Processing Time 0.032 seconds

Influence of Mo Addition on High Temperature Deformation Behavior of L12 Type Ni3Al Intermetallics

  • Han, Chang-Suk;Jang, Tae-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.167-172
    • /
    • 2016
  • The high temperature deformation behavior of $Ni_3Al$ and $Ni_3(Al,Mo)$ single crystals that were oriented near <112> was investigated at low strain rates in the temperature range above the flow stress peak temperature. Three types of behavior were found under the present experimental conditions. In the relatively high strain rate region, the strain rate dependence of the flow stress is small, and the deformation may be controlled by the dislocation glide mainly on the {001} slip plane in both crystals. At low strain rates, the octahedral glide is still active in $Ni_3Al$ above the peak temperature, but the active slip system in $Ni_3(Al,Mo)$ changes from octahedral glide to cube glide at the peak temperature. These results suggest that the deformation rate controlling mechanism of $Ni_3Al$ is viscous glide of dislocations by the <110>{111} slip, whereas that of $Ni_3(Al,Mo)$ is a recovery process of dislocation climb in the substructures formed by the <110>{001} slip. The results of TEM observation show that the characteristics of dislocation structures are uniform distribution in $Ni_3Al$ and subboundary formation in $Ni_3(Al,Mo)$. Activation energies for deformation in $Ni_3Al$ and $Ni_3(Al,Mo)$ were obtained in the low strain rate region. The values of the activation energy are 360 kJ/mol for $Ni_3Al$ and 300 kJ/mol for $Ni_3(Al,Mo)$.

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting (Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성)

  • Joowon Suh;Sangyeob Lim;Hyung-Ha Jin;Young-Bum Chun;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

On the microstructure of pressureless sintered $TiC-TiB_2$ composite refractory (상압소성된 $TiC-TiB_2$ 복합내화재의 미세구조)

  • 심광보;김현기;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.632-639
    • /
    • 1997
  • Relative density and microstructure of the pressureless sintered TiC-$TiB_2$ composite has been studied. The maximum sintered density was 95% and the critical amounts of sintering aids were 1 wt% Fe and 3 wt% Ni. It was found that TiC matrix phase inhibited effectively grain growth of the dispersed $TiB_2$ phase. The TEM investigation reveals that the Ni-rich precipitates were solidified from the liquid phase, confirmed by the presence of the waved and/or step phase boundaries. The precipitates also acts as the origin of the dislocation formation in the matrix phases.

  • PDF

Points to consider before the insertion of maxillary implants: the otolaryngologist's perspective

  • Kim, Sung Won;Lee, Il Hwan;Kim, Soo Whan;Kim, Do Hyun
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.6
    • /
    • pp.346-354
    • /
    • 2019
  • Maxillary implants are inserted in the upward direction, meaning that they oppose gravity, and achieving stable support is difficult if the alveolar bone facing the maxillary sinus is thin. Correspondingly, several sinus-lifting procedures conducted with or without bone graft materials have been used to place implants in the posterior area of the maxilla. Even with these procedures available, it has been reported that in about 5% of cases, complications occurred after implantation, including acute and chronic sinusitis, penetration of the sinus by the implant, implant dislocation, oroantral fistula formation, infection, bone graft dislocation, foreign-body reaction, Schneiderian membrane perforation, and ostium plugging by a dislodged bone graft. This review summarizes common maxillary sinus pathologies related to implants and suggests an appropriate management plan for patients requiring dental implantation.

Microstructural evolution of rheocast Al-6.2wt.%Si alloy with isothermal stirring (Al-6.2wt.%Si 합금의 등온교반시간에 따른 미세조직변화)

  • Lee, Jung-Ill;Park, Ji-Ho;Kim, Gyeung-Ho;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.514-522
    • /
    • 1995
  • The microstructural evolution with isothermal stirring during semi-solid state processing of hypoeutectic Al-6.2wt%Si alloy was studied. Substructure of the individual primary solid particle in the slurry was investigated through transmission electron microscopy(TEM). Formation of subgrain boundaries on the rheocast Al-6.2wt%Si alloy is observed and the misorientation between the grains is shown typically under 2 degrees by analyzing selected area diffraction (SAD) and convergent beam electron diffraction (CBED) patterns. The existence of high angle grain boundaries are also observed in the alloy. Based upon these observations, mechanisms for the primary particles fragmentation are considered. With isothermal stirring, the dislocation density increases, and the evolution of dislocation cell structure takes place, which is interpreted as a process of achieving uniform deformation by dynamic recovery under applied shear stress.

  • PDF

Short-Term Results of Osteochondral Autologous Transfer and Femoral Neck Osteochondroplasty for the Treatment of Osteochondral Lesions of the Femoral Head and Concomitant Femoroacetabular Impingement Syndrome: A Case Series

  • Fernando Diaz-Dilernia;Franco Astore;Martin Buttaro;Gerardo Zanotti
    • Hip & pelvis
    • /
    • v.34 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • This study aimed to analyse the initial results of five patients with symptomatic osteochondral lesions (OCL) and femoroacetabular impingement (FAI) who were treated successfully with osteochondral autologous transfer (OAT) and femoral neck osteochondroplasty (OCP) through surgical dislocation of the hip. Five patients with FAI and OCL of the femoral head who underwent surgery between 2015-2018 were studied retrospectively. All patients had a grade IV OCL, and the median defect size was 2 cm2 (interquartile range [IQR], 2-2). At the final follow-up, the modified Harris hip score showed a median value of 94 (IQR, 91-95) (P=0.04). Pain evaluation using the visual analogue scale showed a median value of 1 (IQR, 1-2) (P=0.04). Adequate graft union and healthy formation of the chondral surface were observed by magnetic resonance imaging. Although the procedure is demanding, the combination of OAT and femoral neck OCP appears to be an effective alternative in young patients.

Formation Mechanism of the Micro Precipitates Causing Oxidation Induced Stacking Faults in the Czochralski Silicon Crystal.

  • Kim, Young-K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.66-73
    • /
    • 1991
  • During the growth of macroscopically dislocation-free Czochralski silicon crystal, micro precipitates causing stacking faults in the silicon wafer during the oxidation are formed Thermal history the cryscausing acquire during the growth process is known to be a key factor determining the nucleation of this micro precipitates. In this article, various mechanisms suggested on the formation of microdefects in the silicon crystal are reviewed to secure the nucleation mechanism of the micro precipitates causing OSF whose pattern is normally ring or annular in CZ silicon crytal. B-defects which are known as vacancy clustering are considered to be the heterogeneous nucleation sites for the micro precipitates causing OSF in the CZ silicon crystals.

  • PDF

Deformation and Recrystallization of INCONEL 690 (인코넬 690의 변형 및 재결정)

  • 표은종;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.167-171
    • /
    • 1995
  • The formation of preferred orientations in cold rolled and recrystallized Inconel 690 sheets was studied by the x-ray texture measurements and TEM observations. The increasing{220} pole intensity in the plane normal at the higher reductions was related to the{110}<112> texture component. The rolling texture of the Inconel 690 was the pure metal type. THe dislocation cells were found in the near{110}<112> oriented grains. The onset of deformation twins in the {112}<111>oriented grains. The onset of deformation twins in the {112}<111> oriented grains. The onset of deformation twins in the {112}<111> oriented grains caused the weakening of {112}<111> and the development of {552}<115> in the rolling texture. The annealing texture of the Inconel 690 sheets was dependent on the annealing temperature. The annealing texture of 750$^{\circ}C$ annealed sheets was similar to the cold rolling texture. The major preferred orientations of the 950$^{\circ}C$ annealed specimens were {112}<110> and {001}<110>. The formation of fine and closely spaced annealing twins in the specimen annealed at 1150$^{\circ}C$ led to the randomization of the annealing texture.

  • PDF

Defects Evaluation of Blue Light Emitting Materials by Wet Etching and Transmission Electron Microscoppy

  • Hong, Soon-Ku;Kim, Bong-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.105-106
    • /
    • 1998
  • Evaluation of def3ects by etch-ppit formation was studied. A NaOH(30 mol%) etchant was found useful for etch-ppit developpment on ZnSe-based eppilayers grown on (001) gaAs. And a H3ppO4(85 mol%) was used in order to developp etch-ppits on GaN-base eppilayers grown on (0001) Al2O3 After etch-ppit formation on the surfsce. Transmission Electron Microscoppy(TEM) was cppmdicted. By etch-ppit developpment and TEM observation we could determine the defect typpes by etch-ppit configurfations and found origin of etch-ppit in the cse of ZnSe-based materials. Based uppon these results we can do defect identification by etch-ppit test simpply. In the case of GaN-based materials we could evaluate nanoppippe density. however high density of threading dislocations in GaN eppilayers were not revealed by etch-ppit developpment. Based uppon these results we can evaluate the nanoppippe density which difficult to evaluate using TEM beacause of its small size(diameter). And at ppresent status direct matching of etch-ppit density to dislocation density would make severe mistake.

  • PDF