• Title/Summary/Keyword: Disk-Spindle System

Search Result 64, Processing Time 0.026 seconds

Finite Element Analysis of Vibration of HDD Disk-Spindle System with Rigid Complex Spindle and Flexible Shaft (복잡한 형상의 강체 스핀들과 유연축을 고려한 HDD 디스크-스핀들 계의 고유진동 유한요소해석)

  • Lee, Sang-Hoon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.784-789
    • /
    • 2000
  • Equations of motion are derived and solved using the finite element method substructure synthesis for the disk-spindle system with rigid spindle and flexible shaft. The disk is modeled as a flexible spinning disk by Kirchhoff plate theory and von Karman nonlinear strain. The spindle supporting the flexible disk is modeled as a rigid body to consider its complex geometry. The stationary shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam, and the ball bearings are modeled as the stiffness matrix with 5 degrees of freedom. Developed theory is applied to analyze the vibration characteristics of a 3.5" HDD and a 2.5" HDD, respectively, and modal tests are performed to verify the simulation results. This paper shows that the developed theory can be effectively applied to the rotating disk-spindle system with the spindle of complex shape.

  • PDF

Vibration Suppression of HDD Spindle System Using Piezoelectric Shunt Damping (압전 션트 댐핑을 이용한 HDD 스핀들 시스템의 진동 저감)

  • 임수철;박종성;최승복;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1089-1094
    • /
    • 2003
  • A main vibration source in HDD is arisen from high rotating disk/spindle, and vibration suppression of the disk-spindle system becomes a critical issue and a major concern for high performance of the drive. In this paper, we study the feasibility of suppressing unwanted vibration of disk-spindle system of the HDD by external shock and excitation utilizing piezoelectric shunt damping methodology. By considering dynamic characteristics of the disk-spindle system through modal analysis, a target vibration mode is determined and then the piezoelectric material is carefully integrated to the modified drive. In order to maximize improvement of vibration characteristics of the proposed system, shunt circuit is optimally designed via tuning processes. Finally, the vibration characteristics of the high rotating disk-spindle system of the proposed drive is experimentally evaluated in frequency domain.

  • PDF

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

A Study on Dynamic Performance Improvement of HDD Disk-Spindle System (HDD 디스크-스핀들 시스템의 동특성 개선에 관한 연구)

  • 좌성훈;손진승;이행수;홍민표;고정석;곽주영;조은형
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1130-1135
    • /
    • 2001
  • This paper investigated the dynamic performance of HDD disk-spindle system to reduce disk fluttering. Rocking frequencies of the disk-spindle system and radial NRRO are measured to escape the ball defect frequencies and to determine the relative optimal position of the disk in the motor. It was found that disk fluttering was reduced by increasing disk thickness, inserting viscoelastic material between the disk and the spacer and decreasing the gap between the disk and the base.

  • PDF

Finite Element Forced Response of a Spinning Flexible HDD Disk-spindle System Considering the Asymmetry Originating from Gyroscopic Effect and Fluid Dynamic Bearings (자이로스코픽 효과와 유체 동압 베어링에 의한 비대칭성을 고려한 회전 유연 디스크-스핀들 시스템의 유한요소 강제 진동 해석)

  • Park, Ki-Yong;Jang, Gun-Hee;Seo, Chan-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.915-922
    • /
    • 2010
  • This paper presents an efficient method for determining the forced response of a spinning flexible disk-spindle system supported by fluid dynamic bearings(FDBs) in a computer hard disk drive(HDD). The spinning flexible disk-spindle system is represented by the asymmetric finite element equations of motion originating from the asymmetric dynamic coefficients of the FDBs and the gyroscopic moment of a spinning disk-spindle system. The proposed method utilizes only the right eigenvectors of the eigenvalue problem to transform the large asymmetric finite element equations of motion into a small number of coupled equations, guaranteeing the accuracy of their numerical integration. The results are then back-substituted into the equations of motion to determine the forced response. The effectiveness of the proposed method was verified by comparing it with the responses from the classical methods of mode superposition with the general eigenvalue problems, and mode superposition with modal approximation. The proposed method was shown to be effective in determining the forced response represented by the asymmetric finite element equations of motion of a spinning flexible disk-spindle system supported by FDBs.

TMR Contribution Analysis of Spindle-Disk System Vibration for the High-Density Hard Disk Drive of 80GB/Platter (80GB/PLATTER 하드 디스크 드라이브 설계를 위한 스핀들-디스크 시스템 진동의 TMR 기여도 분석)

  • 강성우;한윤식;오동호;황태연;김명업
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.58-64
    • /
    • 2001
  • An investigation of the TMR(Track Misregistration) requirements to achieve the capacity of 80GBytes/Platter in 7200rpm disk drive system is reported. This paper also gives an overview of the PES(Position Error Signal) characteristics in the 57,500TPI disk drive to estimate the required 95,000TPI-system PES. The TMR measured by PES are presented and decomposed in order to identify the portions and their contributions of the spindle-disk system vibration and HSA(Head-Stack-Assembly) system vibration respectively. A comprehensive review on the servo system is also presented to provide the practical limits of the modem servo architecture into TMR budget design. The decomposed PES energy distribution shows that the spindle-disk pack vibration is one of the top-ranking sources of the total TMR budget and its percentage contribution is about 50% considering all the other TMR sources.

  • PDF

Experimental Modal Analysis of Disk-Spindle System in Hard Disk Drive (하드 디스크 드라이브 디스크-회전체 계의 실험적 모드 해석)

  • 김철순;박종승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.233-237
    • /
    • 1998
  • In this work, to identify the dynamic characteristics of disk-spindle system in hard disk drive, experimental modal analysis was performed. And an experimental analysis system including testing apparatus, precision sensors, and analysis software was established in order to perform the testing effectively. From the experimental results, coupled and uncoupled modal characteristics of 3-disk spindle system are clearly identified.

  • PDF

Dynamic Analysis Program for Disk Drive Spindle Systems (디스크 드라이브 스핀들 계의 동특성 해석 프로그램)

  • 오동호;김철순;박노열;노광춘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.211-217
    • /
    • 1998
  • A disk rotor dynamic analysis program called by DR. DAP is developed for disk drive spindle systems to analyze dynamic characteristics in operation and to estimate the effects of excitation sources. It is applicable to design for stabilization and to select parts of disk drive spindle systems. The disk drive spindle system in this program is modeled as a flexible shaft with multiple flexible disks, which is supported by bearings and driven by electric motor, and its complicated coupled vibration characteristics are analyzed by using a substructure synthesis technique with the assumed-modes method. All the coupled modes of interest can be well predicted by the example of a three disk hard disk drive with the three tuning parameters. It is also shown that, with the introduction of the excitation sources associated with the defects of ball bearing systems, the magnetic unbalance of spindle motor, the program can well predict the stability of the system, i.e., the possibility of resonance.

  • PDF

Experimental Characterization of Hydrodynamic Bearing Spindle Motor for High Performance Hard Disk Drive (고성능 하드 디스크 드라이브 개발을 위한 유체베어링 스핀들 모터의 특성분석(현장개발사례: SAMSUNG HDD ′SPINPOINT POLARIS SERIES′))

  • Son, Young;Hwang, Tae-Yeon;Han, Tun-Sik;Kang, Seong-Woo;Morris, Frank
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.930-935
    • /
    • 2001
  • The experimental characterization of hydrodynamic bearing spindle motor is performed for the practical implementation of high-performance hard disk drive system. Firstly, the design concept of hydrodynamic bearing for the disk drive system is addressed including the herringbone grooved journal bearing, the spiral grooved thrust bearing, capillary seal design, and the viscous pumping of fluid. Secondly, the experimental evaluation is performed for the disk drive system in which the hydrodynamic bearing spindle motor is implemented and its dynamic performances are compared with conventional ball-bearing spindle motor. The key parameters include NRRO(Non Repeatable Run-Out), disk dynamics, acoustics, and resultant PES (Position Error Signal). Finally, the external gyro-exciting test results including 200k CSS(Continuous Start-Stop) on three angular attitudes(0,90, 180 degree) are presented in order to verify the practical reliability of disk drive system subject to the gyro-motion of hydrodynamic bearing spindle motor.

  • PDF

Shunt Damping of HDD Disk-Spindle System Using Piezoelectric Bimorph (압전 바이모프를 이용한 HDD 디스크-스핀들 시스템의 션트 댐핑)

  • Lim S. C.;Choi S. B,;Park Y P.;Park N, C.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.84-92
    • /
    • 2005
  • This work presents the feasibility of shunt damping far vibration suppression of the rotating HDD disk-spindle system using piezoelectric bimorph. A target vibration mode which significantly restricts the recording density increment of the drive is determined through modal analysis and a piezoelectric bimorph is designed to suppress unwanted vibration. After deriving the two-dimensional generalized electromechanical coupling coefficient of the shunted drive, the shunt damping of the system is predicted by simulating the displacement transmissibility using the coefficient. In addition, optimal design process using sensitivity analysis is undertaken in order to improve the shunt damping of the system. The effectiveness of the proposed methodology is verified through experimental implementation by observing the vibration characteristics of the rotating disk-spindle system in frequency domain.

  • PDF