• 제목/요약/키워드: Disk substrate

검색결과 95건 처리시간 0.02초

단열층을 이용한 광디스크 기판의 서브 미크론 성형에 대한 수치 해석 (Modeling of Passive Heating for Replicating Sub-micron Patterns in Optical Disk Substrates)

  • 배재철;김영민;김홍민;강신일
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.39-44
    • /
    • 2004
  • Transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer, generated during the polymer filling, deteriorates transcribability because the solidified layer prevents the polymer melt from filling the sub-micro patterns. Therefore, the development of the solidified layer during filling stage of injection molding must be delayed. For this delay, passive heating by insulation layer has been used. In the present study, to examine the development of the solidified layer delayed by passive heating, the flow of polymer melt with passive heating was analyzed. Passive heating markedly delayed the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micro patterns. As a result, we predict that passive heating can improve transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mold and measured the transcribability of an optical disk substrate.

광 정보 저장 미디어의 개발 동향 및 광 디스크 기판의 초정밀 설계 및 성형 (Development Trend of Optical Data Storage Media and Design and Fabrication of High Density optical Disk Substrate)

  • 김동묵;강신일;임윤철
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.46-54
    • /
    • 2001
  • Technology of data storage device has developed noticeably as demands and needs of new media increase, Huge data can be conveniently handled using removable type optical disk. In the present paper, the trend and current issue of development for optical disk media are introduced. Standardization of next generation optical disk media, technology of recording and reading, and applications of magneto-optical devices are also discussed. Finally, a methodology of process optimization for design and fabrication of high density optical disk substrate is proposed.

  • PDF

데이터 저장용 디스크의 회전 시 입자이탈에 관한 실험적 연구 (An Investigation of Particle Detachment Ratios From Rotating Data Storage Disks)

  • 박희성;이대영;황정호;김광;장동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.585-588
    • /
    • 2001
  • Particle contamination on the data storage disks has been a serious problem for magnetic hard disk drive manufacturers. For high storage optical disks, such as DVD-ROM/RAM or NFR (near field recording) system, particle-induced damages can be also detected because only a few micrometer particles can prevent read/write signal from optical lens. The increasing areal density and smaller bit size accelerates particle induced damages on the optical disk. One of the methods to prevent particle contamination on the optical disk surface is to handle the disk enclosed in a cartridge like a modern DVD-RAM disk. However, even for a perfectly sealed disk drive, particles are found inside the drive. The other method is to improve disk surface characteristics. Particle contamination on the surface can be reduced by proper selection of disk coating materials. [n this paper, particle detachment ratios for CD (compact disk), DVD (digital versatile disk), HD (magnetic hard disk), HD with Jut lubricant, and aluminosilicate substrate HD were investigated. Surface roughness and surface energy of the test disks were compared with the particle detachment ratios. Proper substrate and lubricant characteristics to reduce particle contamination on the disk surface were found.

  • PDF

회전에 의해 플라스틱 기판에 추가로 발생하는 복굴절의 측정에 관한 연구 (A Study on the Rotation-Induced Birefringence in Plastic Disk Substrate)

  • 김종선;윤경환
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.730-737
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation in one pass has been measured up to 4,800 rpm. The distribution of extra rotation-induced birefringence will be valuable data for designing an optimal optical disk substrate. Finally, experimental results were compared with the extra stresses calculated from simple formulation.

단열층을 이용한 광디스크 기판 성형에 대한 수치 해석 (Modeling of Passive Heating for Replicating Sub-micron Patterns in Optical Disk Substrates)

  • 배재철;김영민;김홍민;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.80-83
    • /
    • 2003
  • Transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer, generated during the polymer filling, deteriorates transcribability because the solidified layer prevents the polymer melt in filling the sub-micro patterns. Therefore, the development of the solidified layer during filling stage of injection molding must be delayed. For this delay, passive heating by insulation layer has been used. In the present study, to examine the development of the solidified layer delayed by passive heating, the flow of polymer melt with passive heating was analyzed. Passive heating markedly delayed the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micro patterns. As a result, we predict that passive heating can improve transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mold and measured the transcribability.

  • PDF

광디스크 기판 성형시 발생하는 복굴절의 최소화를 위한 이론적 연구 (An Theoretical Investigation on the Minimization of Birefringence Distribution in Optical Disk Substrate)

  • 김종성;강신일
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.103-111
    • /
    • 2000
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage density using short wavelength laser are being developed. The birefringence distribution is regarded as one of the most important optical properties for optical disk. In the present study, the birefringence distrubution is calculated using the Leonov model for viscoelastic constitutive equations and Cross/WLF model for viscosity approximation. The effects of processing conditions upon the development of birefringence discosity approximation. The effects of processing conditions upon the development of birefringence distribution in the optical disk were examined theoretically. It was found that the values of the birefringence distributions were very sensitive to the mold wall temperature history which minimizes the birefringence distribution. The analytical results showed the possibility of improving mechanical and optical properties in the optical disk substrates by active control of the mold wall temperature history.

  • PDF

SINTERED $Al_{2}O_{3}$-TiC SUBSTRATE FOR THIN FILM MAGNETIC HEAD

  • Nakano, Osamu;Hirayama, Takasi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1998년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.6-6
    • /
    • 1998
  • In 1957, the first magnetic disk drive compatible with a movable head was introduced as an external file memory device for computer system. Since then, magnetic disks have been improved by increasing the recording density, which has brought about the development of a high performance thin film magnetic head. The thin film magnetic head has a magnetic circuit on a ceramic substrate using IC technology. The physical property of the substrate material is very important because it influences the tribology of head/disk interface and also manufacturing process of the head. $Al_{2}O_{3}$-TiC ceramics, so called ALTIC, is known to be one of the best substrate materials which satisfies this property requirement. Even though the head is not in direct contact with the disk, frequent instantaneous contacts are unavoidable due to its high rotating speed and the close gap between them. This may cause damage in the magnetic recording media and, thus, it is very important that the magnetic head has a good wear resistance. $Al_{2}O_{3}$-TiC ceramics has an excellent tribological property in head/disk interface. Manufacturing process of thin film head is similar to that of IC, which requires extremely smooth and flat surface of the substrate. The substrate must be readily sliced into the heads without chipping. $Al_{2}O_{3}$-TiC ceramics has excellent machineability and mechanical properties. $Al_{2}O_{3}$-TiC ceramics was first developed at Nippon Tungsten Co. as cutting tool materials in 1968, which was further developed to be used as the substrate materials for thin film head in collaboration with Sumitomo Special Metals Co., Ltd. in 1981. Today, we supply more than 60% of the substrates for thin film head market in the world. In this paper, we would like to present the sintering process of $Al_{2}O_{3}$-TiC ceramics and its property in detail.

  • PDF

회전에 의한 플라스틱 기판에 야기되는 복굴절의 측정에 관한 연구 (A Study on the Rotation-induced Birefringence in Plastic Disk Substrate)

  • 김종선;윤경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.470-473
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate. Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation has been measured up to 4,800 rpm.

  • PDF

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Mechanistic Studies on the Formation of Soluble Intermediate during the Electrochemical Nucleation of Lead Dioxide

  • Hwang Euijin;Cho Keunchang;Kim Ho Il;Kim Hasuck
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1054-1058
    • /
    • 1994
  • Different behavior on the formation of soluble intermediate was observed depending on the substrate employed during the nucleation of lead dioxide from plumbous ion using a rotating ring-disk electrode. It was found that no soluble intermediate was formed at glassy carbon electrode, while the presence of soluble intermediate could be detected at platinum substrate. From the different anodic behavior of two substrates, the formation of a probable Pb(Ⅲ) soluble intermediate was suggested. A most probable nucleation mechanism at the platinum substrate involving a second order chemical reaction was derived on the basis of rotating disk electrode experiments.