• Title/Summary/Keyword: Disk shape

Search Result 350, Processing Time 0.022 seconds

The Forging Die Design of Scroll Rotor by using the 3-D FEM Analysis (3차원 유한요소해석을 이용한 스크롤 로터의 단조 금형 설계)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.111-115
    • /
    • 2001
  • The die design for hot forging was investigated for manufacturing precisely of scroll rotor made with Al-Si alloy. A scroll rotor is a non-symmetric 3-D shape part, having involute wraps. Disk-shaped billet of Al-Si alloy was extruded to wraps and boss simultaneously. Because the involute wraps is not axi-symmetric, the flow velocity and the stress of die is very much different at each portion. Moreover, the die in wraps portion is a cantilever beam and fractured. In this paper, the analysis of forming and die stress is investigated using the FEM tool, DEFORM-3D. The tensile strength of tool material is $250kg/mm^{2}$. From the analysis results, we can find the maximum principal stress of die is over the fracture strength and redesign the die. The prototype forged part is superior in net shaping and microstructure.

  • PDF

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

A Numerical Study on the Characteristic of Aeroacoustic Noise in DVD Drive (DVD 드라이브내에서 발생하는 유동소음에 관한 수치적 연구)

  • 유승원;이종수;민옥기
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.471-476
    • /
    • 2001
  • This paper focuses on the numerical prediction of airflow-induced sound in DVD drives. As a first step, computational fluid dynamics (CFD) is conducted to evaluate flow field characteristics due to the high-speed disk rotation, and to support the acoustic analysis. Acoustic analogy based on Ffowcs Wi1liams-Hawkings (FW-H) equation is adopted to predict aeroacoustic noise patterns. The integral solution for quadrupole volume source is included to identify the turbulence noise generated inside the DVD tray. The strength of sound pressure revel with respect to rotating speed is discussed to meet upfront demand on the high fidelity product development. The present study also focuses on the noise directivity and examines how much the sound noise is sensitive to change in rotating speed. Near-field noise is strongly affected by the flow field characteristic, which is caused by the complex shape of the tray. For a mid-field, the quadrupole noise play as a counterpart of thickness noise or loading noise, so it generates different sound noise Patterns compared with those in the near field.

  • PDF

Free and Forced Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 해석)

  • 임승철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.852-859
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles in hard disk drives are to be supported by hydrodynamic bearings in place of conventional ball-type ones. However, the existing models are inappropriate to apply to accurate prediction of vibration characteristics because the HDD spindle tends to take quite a complex shape to secure its performance and cost-effectiveness. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validations via experiments. Remarkably, to this end all the components in the system are modeled as elastic adopting the finite element method.

SRM Driver Using Simple Position Sensor (간단한 위치센서를 이용한 SRM 드라이버)

  • An, Y.J.;Joe, C.J.;Ahn, J.W.;Hwang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.363-365
    • /
    • 1994
  • In switched reluctance motors(SRM), shaft position sensing is essential in order to synchronize the excitation pulse of a pertinent phase to the rotor position. This paper describes the operation of SRM drive using a simple position sensor of low cost. The position sensor is composed of a slotted disk similar to the rotor core shape of a prototype 6/4 SRM and three opto-interrupters disposed at an angle of 30 degrees. The phase current waveforms measured at several rotor speeds in experiment arc compared with those obtained through the computer simulation.

  • PDF

Development of Heat Control Valve Using SMA and Remote Controller for House Heating System (형상기억합금을 이용한 난방용 온도조절 밸브 및 원격 제어장치 개발)

  • Choi, Jeongju;Yeom, Jeongkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.6-11
    • /
    • 2010
  • For the purpose of reducing the energy consumption in the house heating, the various devices have been developed. One of these is to control the flow in the heat pipe and the flow control valve using shape memory alloy(SMA) spring is proposed in our study. The proposed house heating system is to save the gas consumption and the remote control system is designed for the convenience of using the proposed valve. The developed valve consists of SMA spring, disk, return spring, and regulation handle. The regulation handle is for supplying the additional hot water and is controlled by remote-control-motor. In order to design the remote control system, the Zigbee wireless communication protocol is used. The performance of the proposed valve structure is shown through the experimental result.

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Application of Ultrasonic for agglomeration of fine soot particles (미세 매연입자의 응집을 위한 초음파장의 적용)

  • Jeong, Sang-Hyun;Hong, Won-Seok;Shim, Sung-Hun;Kim, Yong-Jin;Lee, Sung-Bum
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.41-49
    • /
    • 2003
  • Ultrasonic field of 28kHz with sound pressure level 162dB has been employed to agglomerate the fine soot particle produces in a diffusion flame in a chamber. The agglomeration process has been investigated with digital camcorder and analysed in terms of the decrease of number density with exposure time. From the observation of agglomeration process, the initial agglomeration has been carried out during the short time, and it has been dominated by the orthokinetic collision. Thereafter, a slower agglomeration mechanism, driven by acoustic streaming in the chamber takes over and agglomeraters grew to diameters of several millimeters were levitated at the pressure node of the acoustic wave. And, the circular disk shape of large agglomeraters with the rotational and translational motion is observed.

  • PDF

Morphological Anaylsis of Wear Debris for Lubricated Moving Machine Surfaces by Image Processing (화상처리에 의한 기계윤활 운동면의 마멸분 형태해석)

  • 박흥식;전태옥;서영백;김형자
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.72-78
    • /
    • 1996
  • This paper was undertaken to analyze the morphology of wear debris generated from lubricated moving machine surfaces by image processing. The lubricati, ng wear test was performed under different experimental conditions using the wear test device made in our laboratory and wear test specimen of the pin on disk type wear rubbed in paraffme series base oil, by varying applied load, sliding distance. The four parameters (50% volumetric diameter, aspect, roundness and reflectivity) to describe the morphology have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties with current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

A Robust Design Study of Air Bearing Slider for HDD (HDD용 에어베어링 슬라이더의 강건설계에 관한 연구)

  • 전규찬;장동섭;좌성훈
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • As the demand for higher areal recording densities requires a lower flying height of the slider, the variation of the flying height of the slider during drive operation becomes of great concern. The variation of the flying height is closely related with the slider design parameters such as air bearing shape, cavity depth, shallow step depth, crown, camber, pitch offset, roll offset, gram load, and so on. The objective of this work is to optimize the cavity depth and the shallow step depth, which are the control factors in air bearing design, using Robust Design method. It was found that the shallow step depth was statistically significant in affecting the variation of flying height, therefore the level of the shallow step depth should be chosen to minimize the variation of flying height.