• Title/Summary/Keyword: Disk cache

Search Result 108, Processing Time 0.026 seconds

Prefetching Framework for General Workloads Using Breakpoint (브레이크포인트를 이용한 범용 워크로드 프리페칭 프레임워크)

  • Ko, Kwangjin;Ryu, Junhee;Kang, Kyungtae;Shin, Heonshik
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.832-837
    • /
    • 2014
  • Application loading speed can be improved by timely prefetching disk blocks likely to be needed by an application. However, existing prefetchers -- if they are not specialized to a particular application -- incur high overheads and are poor at identifying the blocks that will actually be required. There are many sequences in which blocks may be needed and, even if two access sequences are identical, block tracing and access timings can be affected significantly by the state of the buffer cache. We propose a new application-independent software-based prefetching technique, in which breakpoints are inserted at appropriate places in an application to collect the information on correlations between the blocks and to prefetch the potential blocks ahead of their schedule based on it. Experiments on an HDD-based desktop PC demonstrated an average 30% reduction in application launch time and 15% in general I/O, while reducing the wasted overhead.

An Efficient Buffer Cache Management Algorithm based on Prefetching (선반입을 이용한 효율적인 버퍼 캐쉬 관리 알고리즘)

  • Jeon, Heung-Seok;Noh, Sam-Hyeok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.5
    • /
    • pp.529-539
    • /
    • 2000
  • This paper proposes a prefetch-based disk buffer management algorithm, which we call W2R (Veighingjwaiting Room). Instead of using elaborate prefetching schemes to decide which blockto prefetch and when, we simply follow the LRU-OBL (One Block Lookahead) approach and prefetchthe logical next block along with the block that is being referenced. The basic difference is that theW2R algorithm logically partitions the buffer into two rooms, namely, the Weighing Room and theWaiting Room. The referenced, hence fetched block is placed in the Weighing Room, while theprefetched logical next block is placed in the Waiting Room. By so doing, we alleviate some inherentdeficiencies of blindly prefetching the logical next block of a referenced block. Specifically, a prefetchedblock that is never used may replace a possibly valuable block and a prefetched block, thoughreferenced in the future, may replace a block that is used earlier than itself. We show through tracedriven simulation that for the workloads and the environments considered the W2R algorithm improvesthe hit rate by a maximum of 23.19 percentage points compared to the 2Q algorithm and a maximumof 10,25 percentage feints compared to the LRU-OBL algorithm.

  • PDF

Data De-duplication and Recycling Technique in SSD-based Storage System for Increasing De-duplication Rate and I/O Performance (SSD 기반 스토리지 시스템에서 중복률과 입출력 성능 향상을 위한 데이터 중복제거 및 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.149-155
    • /
    • 2012
  • SSD is a storage device of having high-performance controller and cache buffer and consists of many NAND flash memories. Because NAND flash memory does not support in-place update, valid pages are invalidated when update and erase operations are issued in file system and then invalid pages are completely deleted via garbage collection. However, garbage collection performs many erase operations of long latency and then it reduces I/O performance and increases wear leveling in SSD. In this paper, we propose a new method of de-duplicating valid data and recycling invalid data. The method de-duplicates valid data and then recycles invalid data so that it improves de-duplication ratio. Due to reducing number of writes and garbage collection, the method could increase I/O performance and decrease wear leveling in SSD. Experimental result shows that it can reduce maximum 20% number of garbage collections and 9% I/O latency than those of general case.

Efficient Method to Support Mobile Virtualization-based Cloud Resource Management (모바일 가상화기반 클라우드 자원관리를 지원하는 효율적 방법)

  • Kang, Yongho;Jang, Changbok;Lee, Wanjik;Heo, Seokyeol;Kim, Jooman
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.277-283
    • /
    • 2014
  • Recently, various cloud service has been being provided on mobile devices as well as desktop pc and server computer. Also, Smartphone users are very rapidly increasing, and they are using it for enjoying various services(cloud service, game, banking service, mobile office, etc.). So, research to utilize resources on mobile device has been conducted. In this paper, We have suggested efficient method of cloud resource management by using information of available physical resources(CPU, memory, storage, etc.) between mobile devices, and information of physical resource in mobile device. Suggested technology is possible to guarantee real-time process and efficiently manage resources.

The Node Scheduling of Multi-Threaded Process for CC-NUMA System (CC-NUMA 시스템을 위한 다중 스레드 프로세스의 노드 스케줄링 설계 및 구현)

  • Kim, Jeong-Nyeo;Kim, Hae-Jin;Lee, Cheol-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.488-496
    • /
    • 2000
  • this paper describes the design and implementation of node scheduling for MX Server that is CC-NUMA System COMSIX, the operating system of MX Server, is designed to suit for CC-NUMA Architecture. MX Server consists of up to 8 nodes, and each node is connected by SCI ring. This node scheduling scheme considers data locality for performance improvement of Oracle8i DBMS on the CC-NUMA architecture. For DBMS such as Oracle8i, a multi-threaded process may be run to tie on particular disk. We have developed a CG binding function that the multi-threaded process bound the node. Currently, We don't have an available CC-NUMA Platform. Instead of MX Server, we developed the Node scheduling scheme for multi-threaded process to suit server platform on the PC test-bed and tested completely.

  • PDF

Memory Hierarchy Optimization in Embedded Systems using On-Chip SRAM (On-Chip SRAM을 이용한 임베디드 시스템 메모리 계층 최적화)

  • Kim, Jung-Won;Kim, Seung-Kyun;Lee, Jae-Jin;Jung, Chang-Hee;Woo, Duk-Kyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • The memory wall is the growing disparity of speed between CPU and memory outside the CPU chip. An economical solution is a memory hierarchy organized into several levels, such as processor registers, cache, main memory, disk storage. We introduce a novel memory hierarchy optimization technique in Linux based embedded systems using on-chip SRAM for the first time. The optimization technique allocates On-Chip SRAM to the code/data that selected by programmers by using virtual memory systems. Experiments performed with nine applications indicate that the runtime improvements can be achieved by up to 35%, with an average of 14%, and the energy consumption can be reduced by up to 40%, with an average of 15%.

Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster (농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법)

  • Park, J.H.;Shin, Y.S.;Kim, S.K.;Kang, W.S.;Han, Y.K.;Kim, J.H.;Kim, D.J.;Kim, S.O.;Shim, K.M.;Park, E.W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2017
  • The objective of this study is to enhance the model's speed of estimating weather variables (e.g., minimum/maximum temperature, sunshine hour, PRISM (Parameter-elevation Regression on Independent Slopes Model) based precipitation), which are applied to the Agrometeorological Early Warning System (http://www.agmet.kr). The current process of weather estimation is operated on high-performance multi-core CPUs that have 8 physical cores and 16 logical threads. Nonetheless, the server is not even dedicated to the handling of a single county, indicating that very high overhead is involved in calculating the 10 counties of the Seomjin River Basin. In order to reduce such overhead, several cache and parallelization techniques were used to measure the performance and to check the applicability. Results are as follows: (1) for simple calculations such as Growing Degree Days accumulation, the time required for Input and Output (I/O) is significantly greater than that for calculation, suggesting the need of a technique which reduces disk I/O bottlenecks; (2) when there are many I/O, it is advantageous to distribute them on several servers. However, each server must have a cache for input data so that it does not compete for the same resource; and (3) GPU-based parallel processing method is most suitable for models such as PRISM with large computation loads.

An Efficient Spatial Index Structure for Main Memory (메인 메모리를 위한 효율적인 공간 인덱스 구조)

  • Lee, Ki-Young;Lim, Myung-Jae;Kang, Jeong-Jin;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • Recently there is growing interest in LBS requiring real-time services and the spatial main memory DBMS for efficient Telematics services. In order to optimize existing disk-based spatial indexes of the spatial main memory DBMS in the main memory, spatial index structures have been proposed, which minimize failures in cache access by reducing the entry size. However, because the reduction of entry size requires compression based on the MBR of the parent node or the removal of redundant MBR, the cost of MBR reconstruction increases in index update and the efficiency of search is lowered in index search. Thus, to reduce the cost of MBR reconstruction, this paper proposed the RSMB (relative-sized MBR)compression technique, which applies the base point of compression differently in case of broad distribution and narrow distribution. In case of broad distribution, compression is made based on the left-bottom point of the extended MBR of the parent node, and in case of narrow distribution, the whole MBR is divided into cells of the same size and compression is made based on the left-bottom point of each cell. In addition, MBR was compressed using a relative coordinate and size to reduce the cost of search in index search. Lastly, we evaluated the performance of the proposed RSMBR compression technique using real data, and proved its superiority.

  • PDF