• Title/Summary/Keyword: Disk Simulation

Search Result 428, Processing Time 0.023 seconds

A Performance Evaluation of Fully Asynchronous Disk Array Using Simulation Method (시뮬레이션 기법을 이용한 완전 비동기 디스크 어레이 성능 평가)

  • 오유영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.29-43
    • /
    • 1999
  • As real-time processing of data with large storage space is required in the era of multimedia, disk arrays are generally used as storage subsystems which be able to provide improved I/O performance. To design the cost-effective disk array, it is important to develop performance models which evaluate the disk array performance. Both queueing theory and simulation are applicable as the method of performance evaluation through queueing modeling. But there is a limit to the analytical method using queueing theory due to the characteristics of disk array requests being serviced in the parallel and concurrent manner. So in this paper we evaluate the disk array performance using simulation method which abstract disk array systems in the low level. Performance results were evaluated through simulation, so that mean response time, mean queueing delay, mean service time, mean queue length for disk array requests and utilization, throughput for disk array systems, can be utilized for capacity planning in the phase of disk array design.

  • PDF

Design and Implementation of DEVSim++ and DiskSim Interface for Interoperation of System-level Simulation and Disk I/O-level Simulation (시스템수준 시뮬레이션과 디스크 I/O수준 시뮬레이션 연동을 위한 DEVSim++과 DiskSim 사이의 인터페이스 설계 및 구현)

  • Song, Hae Sang;Lee, Sun Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.131-140
    • /
    • 2013
  • This paper deals with the design and implementation of an interface for interoperation between DiskSim, a well-known disk simulator, and a system-level simulator based on DEVSim++. Such inter-operational simulation aims at evaluation of an overall performance of storage systems which consist of multiple computer nodes with a variety of I/O level specifications. A well-known system-level simulation framework, DEVSim++ environment is based on the DEVS formalism, which provides a sound semantics of modular and hierarchical modeling methodology at the discrete event systems level such as multi-node computer systems. For maintainability we assume that there is no change of the source codes for two heterogeneous simulation engines. Thus, we adopt a notion of simulators interoperation in which there should be a means to synchronize simulation times as well as to exchange messages between simulators. As an interface for such interoperation DiskSimManager is designed and implemented. Various experiments, comparing the results of the standalone DiskSim simulation and the interoperation simulation using the proposed interface of DiskSimManager, proved that DiskSimManager works correctly as an interface for interoperation between DEVSim++ and DiskSim.

Dynamic modeling and three-dimensional motion simulation of a disk type underwater glider

  • Yu, Pengyao;Wang, Tianlin;Zhou, Han;Shen, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.318-328
    • /
    • 2018
  • Disk type underwater gliders are a new type of underwater gliders and they could glide in various directions by adjusting the internal structures, making a turnaround like conventional gliders unnecessary. This characteristic of disk type underwater gliders makes them have great potential application in virtual mooring. Considering dynamic models of conventional underwater gliders could not adequately satisfy the motion characteristic of disk type underwater gliders, a nonlinear dynamic model for the motion simulation of disk type underwater glider is developed in this paper. In the model, the effect of internal masses movement is taken into consideration and a viscous hydrodynamic calculation method satisfying the motion characteristic of disk type underwater gliders is proposed. Through simulating typical motions of a disk type underwater glider, the feasibility of the dynamic model is validated and the disk type underwater glider shows good maneuverability.

Design and Experiment investigation of disk bump to improve unload performance in HDD (HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Park, Gyeong-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

Behavior Analysis and Empirical Relation for a Flexible Disk with High Speed Rotation (고속회전 유연디스크의 거동해석과 경험식)

  • Lee, Ho-Ryul;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • Organizations such as broadcasting stations and libraries which deal with huge amount of information require high-capacity storage systems for archiving their materials and information. It is necessary and urgent for the storage people to develop a compact, high capacity, and low-cost data storage systems. Even though the Blue-ray technology is commercialized and now it is on the market, demand for the compact and low-cost system is still increasing. A flexible disk system has been introduced recently to satisfy above mentioned requirements. The system uses multiple of thin disks and is expected to achieve technical requirements. However, decreasing the disk thickness makes it difficult to read and write data because it decreases the disk rigidity so that the transverse vibration of the rotating disk increases easily due to both the interaction with surrounding air and the vibration characteristics of thin flexible disk itself. In this study, flat-type stabilizer is proposed to suppress the transverse vibration of a $95{\mu}m$-thick polycarbonate disk. Characteristics of disk vibration have been studied through the results of numerical analysis from the fluid mechanics point of view. Numerical simulation is verified through the experiment by measuring the gap between the rotating disk and the stationary flat stabilizer. The axial deflections of the disk are computed for various rotating speeds and reference gap sizes and then a method of regression is applied to those data. As a result, an empirical relation is proposed for the steady deformation shape of the rotating disk.

  • PDF

Shock Analysis of Magnetic Rotating Disk and Head (자기 회전 디스크와 헤드의 충격해석)

  • 장영배;박대경;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

Shock Analysis of Head and Disk in Hard Disk Drive According to Various Rotating Speed (하드디스크 드라이브의 회전속도 변화에 따른 디스크와 헤드의 충격해석)

  • 박대경;박노철;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1075-1082
    • /
    • 2004
  • This research demonstrates the shock response analysis of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. Head-suspension system is modeled as the cantilever in order to get simulation results. Simulation results of HDA are calculated by Runge-Kutta method. Finally, shock responses of head and disk are analyzed according to the change of the rotating speed of the disk.

Rarefied Gas Flows in Spiral Channels of a Disk-Type Drag Pump (원판형 드래그펌프내의 희박기체유동)

  • Hwang, Young-Kyu;Heo, Joons-Sik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.82-87
    • /
    • 2000
  • The direct simulation Monte Carlo (DSMC) method is applied to investigate the flow field of a disk-type drag pump. The pumping channels are cut on both sides of a rotating disk. The rotor has 10 Archimedes' spiral blades. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Larsen-Borgnakke phenomenological model is adopted to redistribute the translational and internal energies.

  • PDF

Development of Micro-Computer Simulation Programs for the Various Vibratory Systems (Micro-Computer를 이용한 진동 시스템 Simulation에 관한 연구)

  • Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.3
    • /
    • pp.52-70
    • /
    • 1984
  • This paper presents a micro-computer simulation package for the various vibratory systems. The Package consists of 10 programs which describe the dynamical characteristics of the vibratory system. The programs have been written in BASIC (Appoesoft) language and programmed on the 6502 CPU with 48 KRAM. This simulation package is stored in 5 $^1/_4$ inch floppy disk. The user requires no simulation expertise on the part of designer. Through a process of disk operation, the user can easily under- stand how to use this package.

  • PDF

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.