• 제목/요약/키워드: Disk Drive

검색결과 593건 처리시간 0.021초

반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템 (A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control)

  • 문정호;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권4호
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

디스크와 픽업을 고려한 광디스크 드라이브의 충격응답해석 (Shock Response Analysis of the Optical Disk Drive in Consideration of Disk and Pick up)

  • 신은정;장영배;박노철;박영필
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1261-1267
    • /
    • 2004
  • As the optical disk drives are designed for portable and hostile environment, they have a possibility to miss the track and not to read the data. The shock response of optical disk drives must be analyzed. This research shows the shock response analysis of the optical disk drive. The optical disk drive is modeled as the lumped parameter system in consideration of the pickup and the disk. The lumped parameter model is compared with finite element model in order to verify results. Finally, shock responses are compared with the change of the shock magnitude and the duration.

고밀도 디스크 드라이브를 위한 디스크 두께와 Pemto 슬라이더가 PES에 미치는 영향 (Effects of Disk Thickness and Pemto Slider on Position Error Signal for High TPI Hard Disk Drive)

  • 한윤식;이호성;송용한
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.23-28
    • /
    • 2005
  • This paper investigates the effects of disk thickness and Pemto slider on PES(position error signal) for high TPI(track per inch) drives above 150kTPI at early stage of their development. In order to reduce the disk flutter which becomes a dominant contributor to the TMR, the thicker disks with both 63 and 69mi1 have been used. Also, PES of a Pemto slider with thinner thickness than Pico slider has been estimated to decrease the conversion factor of disk motion in axial direction to head off-track motion. A frequency-domain PES estimation and prediction tool has been developed via measurement of disk flutter and HSA(head stack assembly) forced vibration. It has been validated by the measured PES in drive level. Based on the model and measurement of disk flutter, PES of a drive with the thicker disk and Pemto slider is predicted and their impact is investigated.

  • PDF

하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향 (Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive)

  • 이대영;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.976-983
    • /
    • 2004
  • In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.

환경 조건에 따른 하드디스크의 Stiction 및 AE 특성 (Stiction and AE Characteristics of Hard Disk Drive under Various Environmental Conditions)

  • 박용식;성인하;김대은
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 2001
  • Hard disk drives operate in various environmental conditions. Thus, it is necessary to assess the reliability of the head/disk interface under these conditions. In this work, stiction and acoustic emission signals were investigated under different temperature, humidity, and ambient pressure conditions. Also, track average amplitude was observed for disk failure in N$_2$environment. It is shown that failure of the head/disk interface occurs more readily at high temperature and low ambient pressure conditions.

광디스크 드라이브의 입자 오염 및 열축적 제어를 위한 설계 제안 (Control of Particle Contamination and Heat Build-Up for Noble Design of an Optical Disk Drive)

  • 오서영;황정호
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.25-31
    • /
    • 2003
  • Airborne contaminant particles are intruded into optical disk drives(ODD) due to the flow caused by disk rotation and can be adhered to lens or disk surfaces, which causes decrease of laser power and increase of read/write errors. Such a phenomenon can be more serious as the space between the disk and the lens is reduced fur high-density storage devices. The purpose of this paper is to understand design parameters to reduce the particle intrusion into an ODD. Suggestions are made to prevent the particle intrusion that can decrease the stability of an ODD and also prevent the potential heat build-up problem. The sealing effect of drive and the forced injection of clean air (using HEPA filter) into the drive minimizes intrusion of the outside air and dusts in an ODD remarkably. Moreover it is proved by experiments that the installation of a heatproof pad to isolate heat generation part (PCB) from information read/write sections and the forced injection of dust-free air reduce the gas temperature inside the drive as well as the amount of particles intruded.

고성능 하드 디스크 드라이브 개발을 위한 유체베어링 스핀들 모터의 특성분석(현장개발사례: SAMSUNG HDD ′SPINPOINT POLARIS SERIES′) (Experimental Characterization of Hydrodynamic Bearing Spindle Motor for High Performance Hard Disk Drive)

  • 손영;황태연;한윤식;강성우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.930-935
    • /
    • 2001
  • The experimental characterization of hydrodynamic bearing spindle motor is performed for the practical implementation of high-performance hard disk drive system. Firstly, the design concept of hydrodynamic bearing for the disk drive system is addressed including the herringbone grooved journal bearing, the spiral grooved thrust bearing, capillary seal design, and the viscous pumping of fluid. Secondly, the experimental evaluation is performed for the disk drive system in which the hydrodynamic bearing spindle motor is implemented and its dynamic performances are compared with conventional ball-bearing spindle motor. The key parameters include NRRO(Non Repeatable Run-Out), disk dynamics, acoustics, and resultant PES (Position Error Signal). Finally, the external gyro-exciting test results including 200k CSS(Continuous Start-Stop) on three angular attitudes(0,90, 180 degree) are presented in order to verify the practical reliability of disk drive system subject to the gyro-motion of hydrodynamic bearing spindle motor.

  • PDF

슬림형 광 디스크 드라이브의 방진설계 (An Anti-vibration Design of Slim-type Optical Disk Drive)

  • 김남웅;김국원;홍구;정문채;김외열
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF

데이터 저장용 디스크의 회전 시 입자이탈에 관한 실험적 연구 (An Investigation of Particle Detachment Ratios From Rotating Data Storage Disks)

  • 박희성;이대영;황정호;김광;장동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.585-588
    • /
    • 2001
  • Particle contamination on the data storage disks has been a serious problem for magnetic hard disk drive manufacturers. For high storage optical disks, such as DVD-ROM/RAM or NFR (near field recording) system, particle-induced damages can be also detected because only a few micrometer particles can prevent read/write signal from optical lens. The increasing areal density and smaller bit size accelerates particle induced damages on the optical disk. One of the methods to prevent particle contamination on the optical disk surface is to handle the disk enclosed in a cartridge like a modern DVD-RAM disk. However, even for a perfectly sealed disk drive, particles are found inside the drive. The other method is to improve disk surface characteristics. Particle contamination on the surface can be reduced by proper selection of disk coating materials. [n this paper, particle detachment ratios for CD (compact disk), DVD (digital versatile disk), HD (magnetic hard disk), HD with Jut lubricant, and aluminosilicate substrate HD were investigated. Surface roughness and surface energy of the test disks were compared with the particle detachment ratios. Proper substrate and lubricant characteristics to reduce particle contamination on the disk surface were found.

  • PDF