• Title/Summary/Keyword: Disk Drive

Search Result 593, Processing Time 0.027 seconds

Power Consumption and Sensitivity ratio of VCM-type Actuator for Disk Drive (디스크 드라이브용 VCM 액추에이터의 전력 소모와 감도비에 관한 연구)

  • Kim, Sun-Mo;Jang, Dong-Seob;Yoon, Jinwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1207-1222
    • /
    • 2004
  • In this paper, the explicit equations on the power consumption and sensitivity ratio of VCM-type actuator for disk drive are proposed. The power consumption and sensitivity ratio is derived in frequency domain. The power consumption during the track following of the actuator can be described well in frequency domain and it can be used to calculate the total power dissipation of the actuator which is needed to compensate the tracking and focusing errors. Also, the sensitivity ratio of an actuator is derived by using the reference servo of a disk drive and will be used to optimally obtain the performances of the actuator. This sensitivity ratio can persuasively explain the basis of the target performances of the actuator in the considerations of the reference servo. The usefulness of the proposed equations for the sensitivity ratio and power consumption of an actuator is shown by a lot of simulations. In the near future, we will verify the simulation results by experiments.

Mathematical Model of Hard Disk Drive Actuator System (하드디스크 드라이브 액추에이터 시스템의 수학적 모델)

  • Gwon, Sun-Eok;Park, No-Yeol;Kim, Jun-O;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3080-3087
    • /
    • 2000
  • We obtain the mathematical model of the hard disk drive actuator system the system response data of the finite element analysis or experimental results. The model is base on the Rayleigh-Ritz method to approximate the dynamic response of the actuator system. The basic idea is to use the curve-fit technique to obtain the approximation coefficients. It allows the dynamic analysis of the actuator system without resort to the repetitive finite element modeling work. Even though the dynamic characteristics of the system of the system are affected somewhat by the structural modification and the change of the material properties, we can use the modified size and dynamic properties of the actuator system in the mathematical model to some extent. In this study, we express the mathematical model of the simplified rectangular plate first and then proceed to the actual hard disk drive actuator system.

Noise Source Identification and Acoustic Radiation Power Reduction of Hard Disk Drive Using Sound Intensity (음향 인텐시티를 이용한 하드디스크 드라이브의 소음원 파악 및 음향파워 제어)

  • Kang, Seong-Woo;Han, Yun-Sik;Hwang, Tae-Yeon;Son, Young;Koo, Ja-Choon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1540-1548
    • /
    • 2000
  • Sound intensity techniques and ODS(Operational Deflection Shape) techniques are applied to identify the acoustic noise source of a hard disk drive and its control system. The sound intensity is used to visualize the noise source locations, and the ODS information to visualize the vibration pattern and to obtain the dynamic characteristics of the noise sources. The measurement systems are customized to accurately measure the sound intensity and ODS distributions of HDD system in space domains as well as frequency domains. The measurement systems for the sound absorption and transmission loss of materials are also used to support the background data for the efficient noise control. Using the visual information of source locations and its dynamic characteristics, the partial noise barrier structure and optimum absorption are designed and its controlled sound power level is proved to be under 3.1 Bel(Idle)/3.3Bel (Seek) which is the lowest level in the disk drive industry.

  • PDF

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

Evaluation of Head/Disk interface using TAA Signal (TAA신호를 이용한 하드디스크의 헤드/디스크 인터페이스 분석)

  • Park, Yong-Sik;Lee, Jae-Mo;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • The durability of head/disk interface is an important issue for hard disk drives. Currently, there are several means of assessing the performance and integrity of the head/disk interface. In this work Track Average Amplitude(TAA) signal was used to analyzed the head/disk interface with respect to variations in disk velocity, slider pre-load and preformed scratch on the disk. Particularly, TAA variation due to disk defect in the form of a scratch was investigated.

  • PDF

An Optical Disk Drive Servo System Using a Modified Disturbance Observer (수정된 외란관측기를 이용한 광 디스크 드라이브 서보 시스템)

  • Jeong Jong-Il;Kim Moo-Sub;Oh Kyung-Whan;Chung Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.484-491
    • /
    • 2005
  • Using a disturbance observer is effective in enhancing the performance of dynamic system in presence of disturbances. Although various types of disturbance observers have been proposed to improve sensitivity of systems, there exist poor transient responses due to cross-couplings among disturbance observer loops. In this paper, dual disturbance observer (DOB) is proposed to reduce the effects of the cross-couplings. A different type of loop transfer function is proposed for external disturbance observer. While improving the sensitivity function by adding external DOB, it also provides improved complementary sensitivity function. The proposed dual DOB is applied to a commercial optical disk drive tracking system. It is shown that the dual DOB is an effective method in rejecting the effect of disturbance as well as improving the tracking performance.

Modified Boundary-Fitted Coordinate System Method for HDD Slider Analysis

  • Hwang, Pyung;Polina V. Khan
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2004
  • The hard disk drive performance depends strongly on air bearing characterisitcs of the head slider. The objective of the slider design is to provide accurate positioning of the magnetic read/write element at the very small height above the disk. Application of the numerical methods is required due to complexity of the air bearing surface of the slider. The Boundary-Fitted Coordinate System Divergence Formulation method can be used for calculation of pressure distribution in the case of steep film thickness gradients. In the present work, the interpolating functions used in the expression for the Couette flow are modified in order to improve the solution characteristics in the extremely high compressibility number region. The advantages of the modified method are demonstrated on example of the flat skewed slider. Finally, the modi.ed method is applied to analysis of the static characteristics of the femto-slider. The analysis results indicate the effect of the silder's air bearing surface crown on the flying height and the pitching angle in steady state position.

A New Track-following Control Method Using Disturbance Observer with the Freedom of Gain and Frequency Adaptation (이득의 자유도와 주파수 적응성을 가진 외란 관측기를 사용한 새로운 트랙 추종 제어 기법)

  • Jung, Woo-Min;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.360-362
    • /
    • 2006
  • This paper proposes a new track-following control method using disturbance observer with the freedom of gain and frequency adaptation in optical disk drive system. Recent ODDs use smaller track pits, higher rotation speed and broader rotational speed variations to increase the data capacity and data transfer rate. This cause the degradation of track-following performance by increasing the disturbance of the rotary system. In this paper, we discussed on a DOB structure that efficiently attenuate the disturbance without effecting the overall feedback loop characteristics on CLV type ODD which uses a higher and broader range of rotational speed. DOB structure uses two band pass filter. We analyzed the track-following performance sensitivity on rotational frequency variance and gain changes. This analysis is done on a computer simulation environment and actual ODD product.

  • PDF

Vibration Analysis of Hard Disk Drive System (하드 디스크 드라이브 계의 진동해석)

  • Im, Seung-Cheol;Gwak, Byeong-Mun;Jeon, Sang-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1183-1192
    • /
    • 2000
  • This paper relates to the flexural vibration analysis of the hard disk drive (HDD) spindle systems by means of the finite element method. In contrast to previous researches, every system componebt is here analytically modeled taking into account its flexibility and also the centrifugal effect particularly for the disk. To prove the effectiveness and accuracy of the proposed method, commercial HDD spindle systems with two and three identical disks are chosen as examples. Then, their major flexural natural modes are computed employing only a small number of element meshes as the shaft rotaional speed is varied, and compared with the bumerical or experimental results.

Dynamic Characterizations of a MEMS Microactuator for High Density Hard Disk Drive (고밀도 HDD 용 MEMS 마이크로 액추에이터의 동적 해석)

  • 김철순;전종업;정성환;최재준;민동기;김영훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.917-923
    • /
    • 2001
  • This paper presents the fabrication and testing results of a dual stage microactuator system for fine positioning of magnetic heads in hard disk drives. An electrostatic rotary microactuator was newly designed and fabricated. The microactuator was integrated into the head gimbal assembly of a disk drive system and its dynamic characteristics were investigated. Experimental results show that natural frequency and voltage gain of the microactuator are 4.3 KHz and 25 nm/V and the dual stage microactuator system achieves the tracking accuracy of 30 nm.

  • PDF