• Title/Summary/Keyword: Disinfection treatment

Search Result 372, Processing Time 0.029 seconds

Effects of Disinfectant Concentration, pH, Temperature, Ammonia, and Suspended Solids on the Chlorine Disinfection of Combined Sewer Overflow (소독제 농도, pH, 온도, 암모니아 농도, 부유물질이 강우 월류수 염소 소독에 미치는 영향)

  • Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.685-690
    • /
    • 2014
  • The treatment of combined sewer overflow (CSO) is one of potential concerns in domestic wastewater treatment in Korea due to the pre-announce of CSO regulations. This work investigated the effects of disinfectant (NaOCl) concentration (0.11 to 4.0 mg $Cl_2/L$), pH (6.5 to 8.0), temperature (15 to $25^{\circ}C$), ammonia (10 to 41 mg N/L), and suspended solids (91 to 271 mg SS/L) on the chlorine disinfection of CSO. The effect of NaOCl concentration on the pseudo-$1^{st}$ order reaction rate for total coliform inactivation was described well with a saturation-type model with the half-velocity constant of 1.212 mg/L. The total coliform inactivation reaction rate decreased with SS and pH, and increased with temperature. Ammonia in the examined range did not affect the disinfection kinetics. A chlorine contact tank with the injection chlorine level of 1 mg $Cl_2/L$ and the hydraulic retention time of 1.25 min is estimated to reduce total coliform from $1{\times}10^5MPN/mL$ to 1,000 MPN/mL at 271 mg SS/L, $15^{\circ}C$, and pH 8.0. Chlorine would be a proper option for the disinfection of CSO.

Trial Manufacture and Disinfection Evaluation of Anoxic Chamber System for Museum Insects (저산소 농도 살충 챔버 시스템 시제작 및 박물관 해충 살충 성능 평가)

  • Oh, Joonsuk;Choi, Jungeun;Lee, Jangmook
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.377-385
    • /
    • 2012
  • Anoxic treatments using argon and nitrogen gas in controlled atmospheres have been used as a alternative to methyl bromide for insect disinfection in museums. Anoxic chamber system was manufactured and installed at The National Folk Museum of Korea for the first time in Korea. The internal capacity of anoxic chamber is 0.5m3 in which is able to use argon, nitrogen and carbon dioxide gas. This system is equipped with oxygen concentration, temperature and ralative humidity control devices and automatically controlled oxygen concentration from 0.01 to 20%, temperature from 10 to $50^{\circ}C$ and relative humidity 30 to 80%. To control the oxygen concentration, anoxic chamber system is adopted semi-dynamic method which supplies mixture of humidified gas and dry gas whenever oxygen concentration in chamber becomes higher than setting value. It has kept regularly oxygen concentration, temperature and relative humidity for 20 days using argon gas. To evaluate the disinfection of cigarette beetle larvae and adults and varied carpet beetle larvae, the anoxic chamber system maintained 0.01% of oxygen concentration, $25^{\circ}C$ in temperature and 50% in relative humidity for 30 days. Cigarette beetle larvae were killed in 7 days and adults in 3~5 days. And varied carpet beetle larvae were killed in 3 days. It reaches the conclusion form the evaluation this anoxic chamber system can be used to develop anoxic treatment as an alternative of methyl bromide for insect disinfection of infested cultural properties in museums.

A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon (오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구)

  • 배현주;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

Characteristics of Disinfection By-Products Formation in Chlorination of Principal Raw Waters for Drinking Water of Jeju Island, Korea

  • Oh, Sun-Mi;Park, Tae-Hyun;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1031-1041
    • /
    • 2012
  • This study was carried out to investigate the characteristics of disinfection by-products (DBPs-trihalomethanes (THMs), haloacetic acids (HAAs) and haloacetonitriles (HANs) formation in chlorination of principal raw waters used for drinking water on Jeju Island, Korea. The domestic water supply of other area and humic acid solution (HA) were used as a reference point. The effects of chlorine contact time, solution temperature and pH on DBPs formation potential (DBPFP) were investigated for raw waters. In addition, the effect of $Br^-$ was studied for HA. The DBPFP (THMFP, HAAFP and HANFP) were increased with increasing chlorine contact time. Comparing the individual DBPFPs for raw waters, they decreased in the order of HAAFP > THMFP ${\geq}$ HANFP. As the solution temperature was increased, the THMFP, HAAFP and HANFP increased. With increasing the solution pH, the THMFP was increased, but HAAFP and HANFP were decreased. With the addition of 0.3 mg/L $Br^-$ for HA, the DBPFP was increased and the major chemical species changed: from trichloromethane to dibromochloromethane and tribromomethane for THMs; from dichloroacetic acid and trichloroacetic acid to tribromoacetic acid for HAAs; and from dichloroacetonitrile to dibromoacetonitrile for HANs.

DBPs Variation by Chlorination and Preozonation in Drinking Water (염소 및 오존소독시 정수처리공정별 소독부산물 발생 변화)

  • Kim, Junsung;Choi, Yongwook;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.676-681
    • /
    • 2005
  • This study was researched for disinfection by-products (DBPs) by preozonation, prechlorination and/or postchlorination. DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles, and aldehydes were analyzed by the treatment steps of prechlorination, preozonation, sedimentation, filtration, and postchlorination comparatively. THMs were detected as $52.20{\mu}g/L$ after prechlorination and decreased during sedimentation and filtration process. The HAAs and aldehydes increased more during preozonaiton than prechlorination. However, chlorinated DBPs and aldehydes increased more by postchlorination. Chlorinated DBPs formed by preozonation increased 26% more than the chlorination process. If aldehydes were included in the total DBPs, DBPs increased up to 39% by preozonation. Preozonation could increase the removal efficiency of organic carbon during the coagulation and sedimentation processes. Ozonation might produce aldehydes that are not permitted for drinking water regulations. Also, DBPs were produced by preozonation than by chlorination. These results would bring a need for alternative disinfection studies to decrease DBPs.

A Study on the Stable Operation of High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 안정적 운영에 관한 연구)

  • Cho, Haejin;Na, Chanwook;Ko, Sungho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.69-74
    • /
    • 2017
  • Sodium hypochlorite, used as water disinfectant, is generated by electrolysis of salt. Compared to chlorine gas disinfection, it is free from high-pressure gas regulation and does not generate toxic gas, so it is increasingly used as a safe disinfectant. Despite these advantages, the concentration of sodium hypochlorite decreases with temperature during long-term storage, and the amount of chlorate increases when a large amount is added, it has mainly been applied to small-scale waterworks. To solve this problem, high sodium hypochlorite generation was developed. In this study, the changes of concentration and chlorate of sodium hypochlorite with time has been studied. As a result of the test, it was found that the usable period of sodium hypochlorite produced at a certain temperature or less was increased from 1.5 days to 13 days. Overall, sodium hypochlorite can be applied even in large-scale waterworks, which makes operation more stable and also reduces the disinfection byproducts, thus it contributed greatly to securing water quality.

Characteristics of Disinfection By-Products Formation in Korea (국내 정수장의 소독부산물 생성 특성)

  • Kim, Jinkeun;Jeong, Sanggi;Shin, Changsoo;Cho, Hyukjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.301-311
    • /
    • 2005
  • The characteristics of disinfection by-products (DBPs) formation at 28 water treatment plants in Korea were investigated. Investigated species of DBPs were trihalomethanes (THMs), haloacetic acids (HAAs) and chloral hydrate (CH). The maximum concentration of THMs was $84.1{\mu}g/L$, minimum and the averages were $6.9{\mu}g/L$ and $27.8{\mu}g/L$, respectively; the maximum concentration of $HAA_5$ was $90.8{\mu}g/L$, minimum and the averages were $3.8{\mu}g/L$ and $26.7{\mu}g/L$, respectively; while the maximum concentration of CH was $29.5{\mu}g/L$, minimum and the averages were $0.5{\mu}g/L$ and $7.4{\mu}g/L$, respectively. On the other hand, DBPs levels during summer months, when the water temperature was near $25^{\circ}C$, were nearly twice as great as DBPs levels during the winter season. The ratio of $THMs/HAA_5$ was 1.07, and $HAA_5$ and THMs were the dominant species of DBPS in the Kum-Sumjin river and Nakdong river, respectivley.

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory;Yan, Mingquan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.345-353
    • /
    • 2018
  • This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

오존을 이용한 돈사 내의 탈취 및 살균

  • Go, Myeong-Seok;Yun, Yeong-Mi;Kim, Hyeon-Jong;Jeong, Bong-U;Lee, Hyeon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.438-441
    • /
    • 2000
  • Ozone has the advantages for the strong oxidant agents. Ozone is widely used as a disinfectant and deodorant in water treatment and biosafety cabinets. We attempted deodorization and disinfection in the piggery using ozone treatment. It was found that ozone affects deodorization of ammonia and decrease of microbial organism in the air. Concentration of ammonia decreased 50 percents and microbial organisms in the air were decreased below 10 percents. It will be useful for the application of the ozone to environmental treatment in the piggery.

  • PDF

Inactivation of Infectious Microorganisms by Disinfection and Sterilization Processes for Human Amniotic Membrane Grafts (이식을 위한 사람 양막의 소독 및 멸균공정에 의한 감염성 위해인자 불활화 효과)

  • Bae, Jung-Eun;Kim, Chan-Kyung;Kim, In-Seop
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.346-353
    • /
    • 2009
  • Viral, bacterial, and fungal infection can be transmitted from donor to recipient via transplantation of human amniotic membrane. Therefore human amniotic membrane for transplantation should be disinfected and sterilized before use. The purpose of this study was to examine the efficacy of the disinfection process and sterilization processes used at human tissue bank in the inactivation of viruses, bacteria, and fungi. A variety of experimental model viruses, bacteria, and fungus for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), porcine parvovirus (PPV), Escherichia coli, Bacillus subtilis, and Candida albicans were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and ethylene oxide (EO) gas sterilization process. Also non-enveloped viruses such as HAV and PPV were effectively inactivated to undetectable levels by gamma irradiation and EO gas treatment. However HAV and PPV showed high resistance to 70% ethanol treatment. E. coli and C. albicans were effectively inactivated to undetectable levels by 70% ethanol treatment, gamma irradiation process, and EO gas treatment. Also B. subtilis was effectively inactivated to undetectable levels by gamma irradiation process and EO gas treatment. However it showed high resistance to 70% ethanol treatment.