• Title/Summary/Keyword: Disinfection efficacy

Search Result 61, Processing Time 0.026 seconds

Comparison of the Efficacy of Disinfectants to Control Caseous Lymphadenitis in Korean Black Goat Farms (흑염소의 건락성 림프절염 제어를 위한 소독제 효능 비교)

  • Cho, Hyeunwoo;Kim, Yeona;Jang, Beomsoon;Kim, Chan-Lan;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.317-322
    • /
    • 2022
  • Corynebacterium pseudotuberculosis is the causative agent of caseous lymphadenitis (CLA), a chronic contagious disease in small ruminants. The prevalence of CLA has been reported to be >50% in Korean black goats. CLA is difficult to control due to a lack of efficient vaccines and treatment methods. Effective disinfection of the farm environment may be an alternative strategy for reducing the spread of C. pseudotuberculosis. The objective of this study was to evaluate the efficacy of commercial disinfectants against CLA. The six commercial disinfectants, largely composed of sodium dichloroisocyanurate, sodium hypochlorite, potassium monopersulfate triple salt, quaternary ammonium, citric acid, and copper sulfate, were tested against five different genotypes of C. pseudotuberculosis isolated from goat farms in Korea. Efficacy tests were performed in accordance with the disinfectant efficacy test guidelines recommended by the Animal and Plant Quarantine Agency of Korea with slight modifications. All disinfectants except for copper sulfate exhibited >99.99% killing efficacy under hard water conditions following 30 min of incubation, which is the recommended standard treatment time according to guidelines. The minimum bactericidal treatment time was evaluated by employing treatments for durations of 1, 5, and 15 min. The most effective compounds under hard water conditions were sodium dichloroisocyanurate, potassium monopersulfate triple salt, and sodium hypochlorite, exhibiting >99.99% killing efficacy after 1 min of treatment. In the aqueous solution forms, citric acid and the quaternary ammonium compound were the most effective, but required at least 5 min to kill >99.99% of the bacteria. The current study characterizes the killing efficacy of six commercial disinfectant active compounds against C. pseudotuberculosis. Thus, this study provides essential information regarding the efficacy of the disinfectants used to control CLA in goat farms.

Laser therapy in peri-implantitis treatment: literature review (임플란트주위염 처치에서 레이저의 이용: 문헌고찰)

  • Lee, Kyung-Joong;Lee, Jong-Ho;Kum, Kee-Yeon;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.340-348
    • /
    • 2015
  • Peri-implantitis is the most common reason for a late failure and can occur even after years of successful osseointegration. The role of microbial plaque accumulation in the development of peri-implantitis has been well documented. On the other hand, the ideal method of implant surface decontamination to re-establish the health of peri-implant tissue remains to be determined. Removal of bacterial deposits is essential in the treatment of peri-implant infections, and various therapeutic approaches have been described in the literature, including mechanical debridement, disinfection with chemotherapeutic agents, and laser therapy. Recently, there has been a plenitude of scientific data regarding the use of laser irradiation to achieve titanium surface decontamination. Thus, research is focusing on lasers' potential use in the treatment of peri-implantitis. The aim of this literature review is to analyze and evaluate the efficacy of laser therapy for the treatment of peri-implantitis.

Effect of alginate chemical disinfection on bacterial count over gypsum cast

  • Haralur, Satheesh B.;Al-Dowah, Omir S.;Gana, Naif S.;Al-Hytham, Abdullah
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.84-88
    • /
    • 2012
  • PURPOSE. To evaluate the efficacy of sodium hypochlorite (1 : 10) and iodophor disinfectants on alginate impressions along with their effect on the survived bacterium count on the gypsum cast. MATERIALS AND METHODS. Four alginate impression on each dentate patients were made, of which Group I were not washed or disinfected, Group II impressions were merely washed with water, Group III were disinfected by spraying with sodium hypochlorite (1 : 10), Group IV were disinfected with iodophor (1 : 213). Gypsum cast (type III) were made from all the impression. Impressions and gypsum cast were swabbed in mid palatal region for bacterial culture. Bacterial colony counting done after 3 days of incubation at $37^{\circ}C$ in blood agar media. The data obtained was analyzed by one way ANOVA test at a significant difference level of 0.05. RESULTS. Group I and Group II showed significantly more bacteria compared to Group III and Group IV. Bacterial colonies on the alginate impression and gypsum cast in group disinfected with Sodium hypochlorite (1 : 10) were 0.18, 0.82 respectively compared to group treated with iodophor (1 : 213). There was an increase in bacterial count on dental cast compared to source alginate impressions. CONCLUSION. Sodium hypochlorite (1 : 10) was found to be better disinfectant for alginate impression. There was an indication of increase in number of bacteria from alginate impression to making of dental cast. Additional gypsum cast disinfectant procedures need to be encouraged to completely eliminate cross infection to dental laboratory.

Effect of Chlorine Dioxide Gas Application to Egg Surface: Microbial Reduction Effect, Quality of Eggs, and Hatchability

  • Chung, Hansung;Kim, Hyobi;Myeong, Donghoon;Kim, Seongjoon;Choe, Nong-Hoon
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.487-497
    • /
    • 2018
  • Controlling of microorganisms in the industrial process is important for production and distribution of hatching and table eggs. In the previous study, we reported that chlorine dioxide ($ClO_2$) gas of a proper concentration and humidity can significantly reduce the load of Salmonella spp. on eggshells. In this study, we compared microbial reduction efficacy on egg's surface using hatching eggs and table eggs, internal quality of table eggs, and hatchability after both the conventional method (washing and UV expose, fumigation with formalin) and $ClO_2$ gas disinfection. Application of 40 ppm $ClO_2$ gas to the table and hatching eggs, respectively, reduced the aerobic plate count (APC) with no statistical difference compared with the conventional methods. Additionally, we didn't observed that any significant difference in albumin height, Haugh unit (HU), and yolk color, this result confirms that 40 ppm $ClO_2$ had no effect on the internal quality of the table eggs, when comparing with the UV treatment method. The hatchability of hatching eggs was not statistical different between formaldehyde fumigation and 80 ppm $ClO_2$ gas treatment, though the value was decreased at high concentration of 160 ppm $ClO_2$ gas. From these results, we recommend that $ClO_2$ gas can be used as a safe disinfectant to effectively control egg surface microorganisms without affecting egg quality.

The Effect of the Milk Yield and Performance Analysis of Robot Milking System (로봇 착유시스템의 착유성능 및 착유량에 미치는 영향)

  • Kim, W.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2009
  • The authors of this study have developed a robot milking system composed of a multi-articular manipulator, a teat-cup attachment system, and an image processing system. In order to verify the efficacy of this system, we have conducted a performance analysis and measurement experiment of milk yield, using dairy cattle. It was concluded that teat recognition using the image processing system, teat-cup attachment, and detachment system did not binder milking. The milking yield of the robot milking system was analyzed based on a lactation curve. As a result, it was determined that the use of a robot milking system had no significant effects on milking yields. The robot milking system described in this study is designed specifically with a focus on teat-cup attachment and detachment performance, as well as the effect of these factors on milking yield. In the future, in-depth studies regarding the washing of the teats prior to milking, teat massage, pre-treatment and post-treatment processes after milking, and disinfection processes shall be conducted, in order to render this system feasible for use in an actual milking parlor.

  • PDF

In vitro evaluation of octenidine as an antimicrobial agent against Staphylococcus epidermidis in disinfecting the root canal system

  • Chum, Jia Da;Lim, Darryl Jun Zhi;Sheriff, Sultan Omer;Pulikkotil, Shaju Jacob;Suresh, Anand;Davamani, Fabian
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.8.1-8.7
    • /
    • 2019
  • Objectives: Irrigants are imperative in endodontic therapy for the elimination of pathogens from the infected root canal. The present study compared the antimicrobial efficacy of octenidine dihydrochloride (OCT) with chlorhexidine (CHX) and sodium hypochlorite (NaOCl) against Staphylococcus epidermidis (S. epidermidis) for root canal disinfection. Materials and Methods: The minimum inhibitory concentration (MIC) was obtained using serial dilution method. The agar diffusion method was then used to determine the zones of inhibition for each irrigant. Lastly, forty 6-mm dentin blocks were prepared from human mandibular premolars and inoculated with S. epidermidis. Samples were randomly divided into 4 groups of 10 blocks and irrigated for 3 minutes with saline (control), 2% CHX, 3% NaOCl, or 0.1% OCT. Dentin samples were then collected immediately for microbial analysis, including an analysis of colony-forming units (CFUs). Results: The MICs of each tested irrigant were 0.05% for CHX, 0.25% for NaOCl, and 0.0125% for OCT. All tested irrigants showed concentration-dependent increase in zones of inhibition, and 3% NaOCl showed the largest zone of inhibition amongst all tested irrigants (p < 0.05). There were no significant differences among the CFU measurements of 2% CHX, 3% NaOCl, and 0.1% OCT showing complete elimination of S. epidermidis in all samples. Conclusions: This study showed that OCT was comparable to or even more effective than CHX and NaOCl, demonstrating antimicrobial activity at low concentrations against S. epidermidis.

Anti-protozoal effect of organic acids against Azumiobodo hoyamushi that causes soft tunic syndrome to Halocynthia roretzi (멍게 물렁증의 원인충인 Azumiobodo hoyamushi에 대한 유기산의 살충효과 연구)

  • Lee, Ji Hoon;Park, Kyung Il;Park, Kwan Ha
    • Journal of fish pathology
    • /
    • v.28 no.3
    • /
    • pp.117-123
    • /
    • 2015
  • Economic loss by soft tunic syndrome of edible ascidian, Halocynthia roretzi has become a serious problem. Recently, it has discovered that the cause of this syndrome is infection by a protozoan parasite Azumiobodo hoyamushi. However, only a few studies have been conducted to control this parasitic disease. In a previous research, non-specific disinfectants have been found to be effective in controling the causative parasite. In an attempt to eradicate this causative parasite, organic acids were tested in this study to evaluate their in vitro and in vivo efficacy. In vitro tests showed that 8 different organic acids used in this study were moderately or highly effective with protozoan-killing effects ($EC_{50}=153{\sim}275{\mu}g/ml$). Despite weak in vivo penetration of organic acids into the tunic tissues, treatment with high concentration reduced the mortality of ascidian caused by infection the parasite, indicating that we might be able to develop a disinfection method using environmentally-friendly organic acids.

Bactericidal Effect of Electrolyzed Activated Water Prepared at Different Water Temperatures on Gram-Positive and Gram-Negative Bacteria (전해수 생성온도에 따른 그람양성균과 그람음성균의 살균 효과)

  • Lee, Jeong Min;Chung, Hyun-Jung;Bang, Woo Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1227-1232
    • /
    • 2016
  • Electrolyzed activated water (EAW) has been reported to exhibit strong bactericidal effects on foodborne microorganisms. However, the disinfection efficacy of EAW is affected by factors such as water source and hardness. This study investigated bactericidal effects of EAW against three gram-positive (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus) and three gram-negative (Cronobacter sakazakii, Escherichia coli O157:H7, and Salmonella Enteritidis) foodborne pathogens. Six strains were treated with EAW prepared at different water temperatures (4, 22, and $40^{\circ}C$) for 15 min, and D-values were generated. The results show that the lowest D-values for Lis. monocytogenes by EAW produced at $4^{\circ}C$ and $40^{\circ}C$ were 6.60 and 1.57 min, respectively. The lowest D-value for Sal. Enteritidis by EAW produced at $22^{\circ}C$ was 2.92 min. D-values of all strains treated by EAW produced at $40^{\circ}C$ decreased significantly compared to those treated by EAW produced at $4^{\circ}C$ (P<0.05). These results demonstrate that applying EAW produced at warm temperature is more effective for reducing foodborne pathogens for food safety.

Effect of Surface Sterilization Method on Agrobacterium-mediated Transformation of Field-grown Zoysiagrass Stolon (포장생육 잔디 포복경을 이용한 잔디 형질전환에 있어서 살균방법의 영향)

  • Ahn, Na-Young;Alam, Iftekhar;Kim, Yong-Goo;Bae, Eun-Ji;Lee, Kwang-Soo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • Zoysiagrass (Zoysia japonica Steud.) is an important forage and turfgrass that spreads by stolons and rhizomes. Zoysiagrass stolon can be used directly for Agrobacterium-mediated genetic transformation by exploiting the potential of direct shoot formation. However, surface sterilization of field-grown stolons is difficult and remains to be explored. We developed an effective surface sterilization and culture method using the stolon explant for infection with Agrobacterium tumefaciens. Among various treatments, sequential disinfection in 30% bleach for 15 min followed by 0.1% mercuric chloride for 25 min resulted in the highest number of clean stolons. The efficacy of mercuric chloride was increased under vacuum conditions by incubating at 800 mbar for 5 min. The inclusion of 2.5 mg/l amphotericin B further prevents fungal growth in in vitro cultures. This protocol would speed up the development of transgenic plants by utilizing field-grown stolon nodes.

Effect of Extracts and Bacteria from Korean Fermented Foods on the Control of Sesame Seed-Borne Fungal Diseases (발효식품 추출물과 미생물을 활용한 참깨 종자전염성 병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Park, Jong-Won;Park, So-Hyang;Jee, Hyeong-Jin;Kim, Seok-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.297-308
    • /
    • 2015
  • In order to control seed-borne diseases, we obtained extracts from commercial fermented food products of Kimchi, Gochujang, Doenjang, Ganjang and Makgeolli and their suppressive effects against seed-borne diseases were studied. In addition, the suppressive effects of bacterial strains isolated from the fermented foods were screened in vitro and in vivo. Among fifty food extracts, twenty food-extracts suppressed more than 92% incidence of seedling rots in vitro and seven food extracts increased 58.3-66.8% of healthy seedling in the greenhouse. Among 218 isolates from the fermented foods, 29 isolates showing high antifungal activity against seven seed-borne fungal pathogens were selected. Among 29 isolates, 13 isolates significantly reduced seedling rot and increased healthy seedlings. Sixteen isolates with high antifungal activity and suppressive effect against sesame seedling rots were identified by 16S rRNA sequencing. Fourteen of sixteen isolates were identified as Bacillus spp. and the other two isolates from Makgeolli were identified as Saccharomyces cerevisiae. It was confirmed that B. amyloliquifaciens was majority in the effective bacterial population of Korean fermented foods. In addition, when the bioformulations of the two selected effective microorganisms, B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1, were prepared in powder forms using bentonite, kaolin, talc and zeolite, talc- and kaolin-bioformulation showed high control efficacy against sesame seed-borne disease, followed by zeolite-bioformulation. Meanwhile control efficacy of each bentonite-bioformulation of B. amyloliquifacien Gcj2-1 and B. amyloliquifacien Gcj3-1 was lower than that of bacterial suspension of them. It was found that the selected effective microorganisms from Korean fermented foods were effective for controlling seed-borne diseases of sesame in vitro and in the greenhouse. We think that Korean fermented food extracts and useful microorganisms isolated from the extract can be used as bio-control agents for suppressing sesame seed-borne diseases based on above described results.