• Title/Summary/Keyword: Disease-modifying anti-rheumatic drugs

Search Result 4, Processing Time 0.024 seconds

Analysis of Drug Utilization for Patients with Ankylosing Spondylitis (강직성 척추염 환자에 대한 약물사용 현황 분석)

  • Kang, Han-Bin;Je, Nam Kyung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.25 no.4
    • /
    • pp.246-253
    • /
    • 2015
  • Background & Object: Ankylosing spondylitis (AS) is a chronic inflammatory disease that causes ankylosis and deformation of axial joints. Since current medicine cannot cure the disease yet, alleviating pain and preventing deformation with medications are the main therapy for patients with AS. The key medications for these purposes include nonsteroidal anti-inflammatory drugs (NSAIDs), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) inhibitors. This study aims to analyze prescribing patterns of AS patients in South Korea. Method: National Patients Sample data compiled by the Health Insurance Review and Assessment Service from 2013 was analyzed. Patients with AS were identified with Korean Standard Classification of Diseases code-6, which was M45. The rates of prescription, discontinuation, and switching ingredients were calculated for each medication during 2013. Results: Total number of patients was 655, and most of them were male (n = 514, 78.5%). Of all age groups, the proportion of 30-40 year old patients was the greatest (35.1%). The most utilized drug class was NSAIDs (82.4%). Less than half of patients were prescribed $TNF-{\alpha}$ inhibitors (n = 212, 32.4%). Meloxicam, aceclofenac, and celecoxib were the most frequently prescribed NSAIDs. In case of $TNF-{\alpha}$ inhibitors, adalimumab, etanercept and infliximab were the top three most prescribed drugs. Although not recommended by the current practice guideline, significant proportions of patients were identified using disease modifying anti-rheumatic drugs (DMARDs). Conclusion: Considering the current practice guideline and previous studies about the efficacy, the use of DMARDs should be reduced and medical insurance term in South Korea should be re-examined.

Rheumatiod Arthritis: An Updated Overview of Latest Therapy and Drug Delivery

  • Kesharwani, Disha;Paliwal, Rishi;Satapathy, Trilochan;Paul, Swarnali Das
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.210-224
    • /
    • 2019
  • Rheumatoid arthritis is a severe autoimmune disorder, related to joints. It is associated with serious cartilage destruction. This causes disability and reduces the excellence of life. Numerous treatments are existed to combat this disease, however, they are not very efficient and possess severe side effects, higher doses, and frequent administration. Therefore, newer therapies are developed to overcome all these limitations. These include different monoclonal antibodies, immunoglobulins, small molecules used for immunotherapy and transgenes for gene therapy. One of the main goals of these new generation therapeutics is to address the underlying distressing biological processes by specifically targeting the causative agents with fewer systemic side effects and greater patient console. It is very fortuitous that loads of progressive investigations are going on in this field and many of them have entered into the successful clinical trial. But till date, a limited molecule has got FDA clearance and entered the market for treating this devastating disease. This review highlights the overview of conventional therapy and advancements in newer therapeutics including immunotherapy and gene therapy for rheumatoid arthritis. Further, different novel techniques for the delivery of these therapeutics of active and passive targeting are also described.

Recent Advances in Cell Therapeutics for Systemic Autoimmune Diseases

  • Youngjae Park;Seung-Ki Kwok
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.10.1-10.17
    • /
    • 2022
  • Systemic autoimmune diseases arise from loss of self-tolerance and immune homeostasis between effector and regulator functions. There are many therapeutic modalities for autoimmune diseases ranging from conventional disease-modifying anti-rheumatic drugs and immunosuppressants exerting nonspecific immune suppression to targeted agents including biologic agents and small molecule inhibitors aiming at specific cytokines and intracellular signal pathways. However, such current therapeutic strategies can rarely induce recovery of immune tolerance in autoimmune disease patients. To overcome limitations of conventional treatment modalities, novel approaches using specific cell populations with immune-regulatory properties have been attempted to attenuate autoimmunity. Recently progressed biotechnologies enable sufficient in vitro expansion and proper manipulation of such 'tolerogenic' cell populations to be considered for clinical application. We introduce 3 representative cell types with immunosuppressive features, including mesenchymal stromal cells, Tregs, and myeloid-derived suppressor cells. Their cellular definitions, characteristics, mechanisms of immune regulation, and recent data about preclinical and clinical studies in systemic autoimmune diseases are reviewed here. Challenges and limitations of each cell therapy are also addressed.

The design for therapeutic agents of Leucine Rich Repeat protein using bioinformatics

  • Kim, Seong Yeol;Park, Beom Seok
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.156-162
    • /
    • 2019
  • Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by progressive joint deterioration; Furthermore, RA can also affect body tissues, including the skin, eyes, lungs, heart and blood vessels. The early stages of RA can be difficult to diagnose because the signs and symptoms mimic those of many other diseases. It is not known exactly what triggers the onset of RA and how to cure the disease. But recent discoveries indicate that remission of symptoms is more likely when treatment begins early with strong medications known as disease-modifying anti-rheumatic drugs (DMARDs). Tumor necrosis factor (TNF) inhibitors are typical examples of biotherapies that have been developed for RA. The substances may occur naturally in the body or may be made in the laboratory. Other biological therapies care biological response modifiers (BRMs)such as monoclonal antibodies, interferon, interleukin-2 (IL-2) and a protein binder using repeat units. These substances play significant anti-inflammatory roles. Proteins with recurrent, conserved amino acid stretches mediate interactions among proteins for essential biological functions; for example, ankyrin (ANK), Heat repeat protein (HEAT), armadillo repeat protein (ARM) and tetratricopeptide repeats (TPR). Here, we describe Leucine rich repeats (LRR) that ideally fold together to form a solenoid protein domain and is more applicable to our current study than the previously mentioned examples. Although BRMs have limitations in terms of immunogenicity and effector functions, among other factors, in the context therapeutic use and for proteomics research, We has become clear that repeat-unit-derived binding proteins will increasingly be used in biotechnology and medicine.