• 제목/요약/키워드: Disease prediction

검색결과 555건 처리시간 0.036초

Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index

  • Bae, Sunghwan;Choi, Sungkyoung;Kim, Sung Min;Park, Taesung
    • Genomics & Informatics
    • /
    • 제14권4호
    • /
    • pp.149-159
    • /
    • 2016
  • With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar.

한국인에서 면역글로불린-저항성 가와사키병 환자의 예측 (Prediction of Intravenous Immunoglobulin Nonresponse Kawasaki Disease in Korea)

  • 최명현;박청수;김동수;김기환
    • Pediatric Infection and Vaccine
    • /
    • 제21권1호
    • /
    • pp.29-36
    • /
    • 2014
  • 목적: 이 연구의 목적은 면역글로불린-저항성 가와사키병의 예측 인자를 찾고 점수화된 예측 모델을 만들고자 하는 것이다. 방법: 2009년 1월부터 2012년 12월까지 세브란스 어린이 병원에서 가와사키병으로 진단된 573명의 환자를 대상으로 하였다. 실험군과 검증군으로 나누었고, 각 군들은 면역글로불린-반응성과 저항성으로 나누었다. 실험군에서 면역글로불린의 예측 인자를 찾았고, 점수화된 예측모델을 만들었다. 그리고 외적, 내적 타당성 검증을 시행하였다. 결과: 남성, 경부림프절종대, 손과 발의 변화, 혈소판, 총빌리루빈, 젖산탈수효소, CRP가 면역글로불린-저항성 가와사키병의 예측 인자로 나타났다. 점수화된 예측 모델을 만들었고, 민감도와 특이도가 실험군에서는 52.5%와 82.4%, 검증군에서는 37.8%와 81.8%로 나타났다. 결론: 우리의 점수화된 예측 모델은 한국 환자에 적용하였을 때 높은 특이도와 낮은 민감도를 갖는다.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

AI를 이용한 홈CCTV 영상의 반려묘 행동 패턴 분석 및 질병 예측 시스템 연구 (Cat Behavior Pattern Analysis and Disease Prediction System of Home CCTV Images using AI)

  • 한수연;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.165-167
    • /
    • 2022
  • 반려동물 중 반려묘의 비중이 2012년 이후 연평균 25.4%의 증가율을 보이며 증가하는 추세이다. 고양이는 강아지에 비해 야생성이 강하게 남아있기 때문에 질병이 생기면 잘 숨기는 특성이 있다. 보호자가 반려묘가 질병이 있음을 알게 되었을 때는 병이 이미 악화되어진 상태일 수 있다. 반료묘의 식욕부진(식사회피), 구토, 설사, 다음, 다뇨 등과 같은 현상은 당뇨, 갑상선기능항진증, 신부전증, 범백혈구감소증 등 고양이 질병 시 나타나는 증상 중 일부이다. 반려묘의 다음(물 많이 마심), 다뇨(소변의 양이 많음), 빈뇨(소변을 자주 봄) 현상을 보호자가 보다 빨리 알아차릴 수 있다면 반려묘의 질병 치료에 크게 도움이 될 것이다. 본 논문에서는 인공지능 서버에서 작동하는 1) 자세 예측 DeepLabCut의 Efficient버전, 2) 객체 검출 yolov4, 3) 행동 예측은 LSTM을 사용한다. 인공지능 기술을 이용하여 홈 CCTV의 영상에서 반려묘의 행동 패턴 분석과 물그릇의 무게 센서를 통해 반려묘의 다음, 다뇨 및 빈뇨를 예측한다. 그리고, 반려묘 행동 패턴 분석을 통해, 질병 예측 및 이상행동 결과를 보호자에게 리포트 하는, 메인 서버시스템과 보호자의 모바일로 전달하는 애플리케이션을 제안한다.

  • PDF

클러스터링 알고리즘기반의 COVID-19 상황인식 분석 (Analysis of COVID-19 Context-awareness based on Clustering Algorithm)

  • 이강환
    • 한국정보통신학회논문지
    • /
    • 제26권5호
    • /
    • pp.755-762
    • /
    • 2022
  • 본 논문에서는 학습 예측이 가능한 군집적 알고리즘으로 COVID-19에서 상황인식정보인 질병의 속성정보와 클러스터링를 이용한 군집적 알고리즘을 제안한다. 클러스터링 내에서 처리되는 군집 데이터는 신규 또는 새롭게 입력되는 정보가 상호관계를 예측하기 위해 분류 제공되는데, 이때 새롭게 입력되는 정보가 비교정보에서 오염된 정보로 처리되면 기존 분류된 군집으로부터 벗어나게 되어 군집성을 저하시키는 요인으로 작용하게 된다. 본 논문에서는 COVID-19에서의 질병속성 정보내 K-means알고리즘을 이용함에 있어 이러한 문제를 해결하기 위해 질병 상호관계 정보 추출이 가능한 사용자 군집 분석 방식을 제안하고자 한다. 제안하는 알고리즘은 자율적인 사용자 군집 특징의 상호관계를 분석학습하고 이를 통하여 사용자 질병속성간에 따른 클러스터를 구성해 사용자의 누적 정보로부터 클러스터의 중심점을 제공하게 된다. 논문에서 제안된 COVID-19의 다중질병 속성정보군집단위로 분류하고 학습하는 알고리즘은 적용한 모의실험 결과를 통해 사용자 관리 시스템의 예측정확도가 학습과정에서 향상됨을 보여주었다.

기상 및 소셜미디어 정보를 활용한 인플루엔자 예측모형 (Influenza prediction models by using meteorological and social media informations)

  • 황은지;나종화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권5호
    • /
    • pp.1087-1095
    • /
    • 2015
  • 인플루엔자는 흔히 독감으로 불리는 질병으로 인플루엔자 바이러스가 호흡기 (코, 인후, 기관지, 폐 등)에 감염되어 생기는 병이다. 감기와는 달리 심한 증상을 나타내거나 생명이 위험한 합병증 (폐렴 등)을 유발할 수도 있다. 본 연구에서는 인플루엔자에 대한 예측모형을 다루었으며, 주로 회귀적인 모형을 고려하였다. 기존의 연구들이 주로 기상요인을 예측변수로 사용한 반면, 본 연구에서는 소셜요인의 효과를 살펴보았으며 그 결과 기상요인과 대등한 설명력을 가짐을 확인하였다. 반응변수로는 국민건강보험공단에서 제공하는 인플루엔자 진료건수가 사용되었고, 설명변수에는 기상청에서 제공하는 기상정보와 트위터에서의 인플루엔자 연관키워드 빈도가 사용되었다. 모형의 비교를 위해 시계열 모형도 함께 제시되었다.

당뇨병성 발궤양 발생 위험 예측모형과 노모그램 개발 (Development of a Diabetic Foot Ulceration Prediction Model and Nomogram)

  • 이은주;정인숙;우승훈;정혁재;한은진;강창완;현수경
    • 대한간호학회지
    • /
    • 제51권3호
    • /
    • pp.280-293
    • /
    • 2021
  • Purpose: This study aimed to identify the risk factors for diabetic foot ulceration (DFU) to develop and evaluate the performance of a DFU prediction model and nomogram among people with diabetes mellitus (DM). Methods: This unmatched case-control study was conducted with 379 adult patients (118 patients with DM and 261 controls) from four general hospitals in South Korea. Data were collected through a structured questionnaire, foot examination, and review of patients' electronic health records. Multiple logistic regression analysis was performed to build the DFU prediction model and nomogram. Further, their performance was analyzed using the Lemeshow-Hosmer test, concordance statistic (C-statistic), and sensitivity/specificity analyses in training and test samples. Results: The prediction model was based on risk factors including previous foot ulcer or amputation, peripheral vascular disease, peripheral neuropathy, current smoking, and chronic kidney disease. The calibration of the DFU nomogram was appropriate (χ2 = 5.85, p = .321). The C-statistic of the DFU nomogram was .95 (95% confidence interval .93~.97) for both the training and test samples. For clinical usefulness, the sensitivity and specificity obtained were 88.5% and 85.7%, respectively at 110 points in the training sample. The performance of the nomogram was better in male patients or those having DM for more than 10 years. Conclusion: The nomogram of the DFU prediction model shows good performance, and is thereby recommended for monitoring the risk of DFU and preventing the occurrence of DFU in people with DM.

뇌혈관질환에서 다이아목스부하 뇌 단일광자방출 전산화단층촬영 (Diamox-enhanced Brain SPECT in Cerebrovascular Diseases)

  • 최윤영
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.85-90
    • /
    • 2007
  • Acute event in cerebrovascular disease is the second most common cause of death in Korea following cancer, and it can also cause serious neurologic deficits. Understanding of perfusion status is important for clinical applications in management of patients with cerebrovascular diseases, and then the attacks of ischemic neurologic symptoms and the risk of acute events can be reduced. Therefore, the normal vascular anatomy of brain, various clinical applications of acetazolamide-enhanced brain perfusion SPECT, including meaning and role of assessment of vascular reserve in carotid stenosis before procedure, in pediatric Moyamoya disease before and after operation, in prediction of development of hyperperfusion syndrome before procedure, and in prediction of vasospasm and of prognosis in subarachnoid hemorrahge were reviewed in this paper.

Review of Biological Network Data and Its Applications

  • Yu, Donghyeon;Kim, MinSoo;Xiao, Guanghua;Hwang, Tae Hyun
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.200-210
    • /
    • 2013
  • Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.