• 제목/요약/키워드: Disease models

검색결과 1,091건 처리시간 0.032초

증가된 글루타민에 의해 초래되는 뇌신경질환의 초파리 모델에 대한 연구 (Expression of Expanded Polyglutamine Disease Proteins in Drosophila (Drosophila Polyglutamine Disease Models))

  • 신상민;백경훈;진동규
    • Clinical and Experimental Pediatrics
    • /
    • 제48권4호
    • /
    • pp.425-432
    • /
    • 2005
  • 목 적 : 폴리글루타민 질환은 해당 발현단백질의 연속되는 글루타민 아미노산 서열이 신장되기 때문에 일어나는 질환군이다. 현 연구는 폴리글루타민 질환 형질전환 초파리 모델들이 환자들 에서와 유사한 장애를 나타내는지 확인하기 위해 수행되었다. 방 법 : 폴리글루타민 질환 (SCA3) 형질전환 초파리를 대상으로 벽을 기어오르는 운동 능력을 검사하였다. 또한 유전학적인 방법을 통해서 아폽토시스를 억제하는 bcl-2 유전자와 화학적 샤페론이 뇌신경의 퇴행에 어떤 영향을 미치는지 확인하였으며 향후의 연구를 위해 척수소뇌 운동실조증 타입 2 (SCA2) 질환을 발현하는 형질전환 초파리를 생산하였다. 결 과 : SCA3 형질전환 초파리에서 신장된 폴리글루타민 배열을 지니는 질환성 초파리의 경우 신경계에서 해당 단백질을 발현하였을 경우 전형적인 운동 능력 상실을 나타냈다. 아폽토시스를 억제하는 유전자인 bcl-2를 함께 발현했을 경우, 신장된 단백질의 유독한 영향을 약화시키지 못했지만, 화학적 샤페론인글리세롤의 경우 적어도 눈에서의 유독한 영향은 억제하는 것으로 보인다. 본 연구진에 의해 개발된 SCA2 형질전환 초파리의 경우 유해 단백질의 발현 정도가 낮아서 정확한 분석이 어려웠다. 결 론 : SCA3 형질전환 초파리는 환자들에서 발견되는 운동실조증을 보였다. 글리세롤과 같은 화학적 샤페론이 현재 치료가 전무한 이 종류의 질환군의 치료에 효과적일 것으로 사료된다.

머신러닝을 활용한 식품소비에 따른 대사성 질환 분류 모델 (Metabolic Diseases Classification Models according to Food Consumption using Machine Learning)

  • 홍준호;이경희;이혜림;정환석;조완섭
    • 한국콘텐츠학회논문지
    • /
    • 제22권3호
    • /
    • pp.354-360
    • /
    • 2022
  • 대사성 질환은 국내의 경우 유병률이 26%에 이르는 질환으로 복부비만, 고혈압, 공복혈당장애, 고중성지방, 낮은 HDL 콜레스테롤 5가지 상태 중 3가지를 동시에 가진 상태를 말한다. 본 논문은 농촌진흥청의 소비자패널 데이터와 건강보험공단의 진료 데이터를 연계하여 식품 소비 특성을 통해 대사성 질환자군과 대조군으로 나누는 분류 모델을 생성하고 차이를 비교하고자 한다. 기존의 국내외에서 연구된 많은 대사성 질환과 식품 소비 특성 관련 연구는 특정 식품군이나 특정 성분의 질환 상관성 연구이며, 본 논문은 일반 식사에서 포함하는 모든 식품군을 고려한 로지스틱 회귀를 이용한 분류 모델, 의사결정나무 기반 분류 모델, XGBoost를 활용한 분류 모델을 생성하였다. 세 가지 모델 중 정확도가 높은 모델은 XGBoost 분류 모델이지만, 정확도가 0.7 미만으로 높지 않았다. 향후 연구로 환자군의 식품 소비 관찰 기간을 5년 이상으로 확대하고 섭취한 식품을 영양적 특성으로 변환한 후 대사성 질환 분류 모델 연구가 필요하다.

주요 식중독 원인 미생물들에 대한 용량-반응 모델 연구 (A Study on Dose-Response Models for Foodborne Disease Pathogens)

  • 박명수;조준일;이순호;박경진
    • 한국식품위생안전성학회지
    • /
    • 제29권4호
    • /
    • pp.299-304
    • /
    • 2014
  • 본 연구는 정량적 미생물 위해평가(Quantitative microbial risk assessment: QMRA)에 절대적으로 필요하지만 국내의 경우 관련 정보 및 자료가 부족한 주요 식중독 원인 미생물에 대한 용량-반응모델(dose-response models) 관련 자료를 수집 정리하여 가장 적합한 용량-반응 모델을 분석 및 선정하였다. 1980년부터 2012년까지 식중독 발생과 관련이 있는 26종의 세균, 9종의 바이러스, 8종의 원생동물관련 용량-반응 모델 및 위해평가 자료들을 중심으로 국내 NDSL (National Digital Science Library), 국외 PubMed, ScienceDirect database에서 총 193개의 논문을 추출하여 정리하였다. 조사된 자료로부터 세균별, 바이러스별, 원생동물별 용량-반응 모델의 미생물 위해평가 활용여부를 확인하고, 위해평가에 활용된 모델들을 메타분석(meta-analysis)에서 사용되고 있는 Relative frequency (fi, 상대빈도 값)를 계산하여 가장 적정한 용량-반응 모델을 제시하였다. 주요 식중독 원인 미생물들인 Campylobacter jejuni, pathogenic E. coli O157:H7 (EHEC / EPEC / ETEC), Listeria monocytogenes, Salmonella spp., Shigella spp., Staphylococcus aureus, Vibrio parahaemolyticus, Vibrio cholera, Rota virus, Cryptosporidium pavum의 적정 용량-반응 모델은 beta-poisson (${\alpha}=0.15$, ${\beta}=7.59$, fi = 0.72), beta-poisson (${\alpha}=0.49$, ${\beta}=1.81{\times}10^5$, fi = 0.67) / beta-poisson (${\alpha}=0.22$, ${\beta}=8.70{\times}10^3$, fi = 0.40) / beta-poisson (${\alpha}=0.18$, ${\beta}=8.60{\times}10^7$, fi = 0.60), exponential ($r=1.18{\times}10^{-10}$, fi = 0.14), beta-poisson (${\alpha}=0.11$, ${\beta}=6,097$, fi = 0.09), beta-poisson (${\alpha}=0.21$, ${\beta}=1,120$, fi = 0.15), exponential ($r=7.64{\times}10^{-8}$, fi = 1.00), beta-poisson (${\alpha}=0.17$, ${\beta}=1.18{\times}10^5$, fi = 1.00), beta-poisson (${\alpha}=0.25$, ${\beta}=16.2$, fi = 0.57), exponential ($r=1.73{\times}10^{-2}$, fi = 1.00), and exponential ($r=1.73{\times}10^{-2}$, fi = 0.17)로 각각 선정하였다. 본 연구에서 제시된 용량-반응 모델들은 향후 국내 QMRA 관련 연구 및 진행에 많은 도움이 될 것으로 기대된다.

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert;Kim, Soochi;Kim, Jeesu;Rhee, Siyeon
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.393-399
    • /
    • 2020
  • Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

기관지천식에서의 신경적 기전 (Neural Mechanism in Bronchial Asthma)

  • 최병휘
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권2호
    • /
    • pp.73-86
    • /
    • 1994
  • In addition to classic cholinergic and adrenergic pathways, the existence of a third division of autonomic control in the human airways has been proved. It is called a nonadrenergic noncholinergic(NANC) nervous system, and difficult to study in the absence of specific blockers. Neuropeptides are certainly suggested to be transmitters of this NANC nervous system. It is very frustrating to understand the pathophysiologic role of these peptides in the absence of any specific antagonists. However, further studies of neuropeptides might eventually lead to novel forms of treatment for bronchial asthma. Another study of the interaction between different components of the autonomic nervous system, either in ganglionic neurotransmission or by presynaptic modulation of neurotransmitters at the end-organ will elute neural control in airway disease, particularly in asthma. Studies of how autonomic control may be disordered in airway disease should lead to improvements in clinical management. Epithelial damage due to airway inflammation in asthma may induce bronchial hyperresponsiveness. Axon reflex mechanism is one of possible mechanisms in bronchial hyperresponsiveness. Epithelial damage may expose sensory nerve terminals and C-fiber nrve endings are stimulated by inflammatory mediators. Bi-directional communication between the nerves and mast cells may have important roles in allergic process. The psychological factors and conditioning of allergic reactions is suggested that mast cell activation might be partly regulated by the central nervous system via the peripheral nerves. Studies in animal models, in huamn airways in vitro and in patients with airway disease will uncover the interaction between allergic disease processes and psychologic factors or neural mechainsms.

  • PDF

A Comparative Study of [F-18] Florbetaben (FBB) PET Imaging, Pathology, and Cognition between Normal and Alzheimer Transgenic Mice

  • Thapa, Ngeemasara;Jeong, Young-Jin;Kang, Hyeon;Choi, Go-Eun;Yoon, Hyun-Jin;Kang, Do-Young
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.7-14
    • /
    • 2019
  • Alzheimer's disease (AD) is highly prevalent in dementia, with no specifically effective treatment having yet been discovered. Amyloid plaques are one of the key hallmarks of AD. Transgenic mouse models exhibiting Alzheimer's disease-like pathology have been widely used to study the pathophysiology of Alzheimer's disease. In this study, we showed an age-dependent correlation between cognitive function, pathological findings, and [F-18] Florbetaben (FBB) PET images. Nineteen transgenic mice (12 with AD, 7 with controls) were used for this study. We observed an increase in ${\beta}$-Amyloid deposition ($A{\beta}$) in brain tissue and [F-18] FBB amyloid PET imaging in the AD group. The [F-18] FBB data showed a mildly negative trend with cognitive function. Pathological findings were negatively correlated with cognitive functions. These finding suggests that amyloid beta deposition can be well-monitored with [F-18] FBB PET and a decline in cognitive function is related to the increase in amyloid plaque burden.

Cucurbit Powdery Mildew: First Insights for the Identification of the Causal Agent and Screening for Resistance of Squash Genotypes (Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.) in Mendoza, Argentina

  • Caligiore-Gei, Pablo Fernando;Della-Gaspera, Pedro;Benitez, Eliana;Tarnowski, Christian
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.296-303
    • /
    • 2022
  • The cucurbit powdery mildew (CPM) caused by different fungal species is a major concern for cucurbit crops around the world. In Argentina CPM constitutes the most common and damaging disease for cucurbits, especially for squash crops (Cucurbita moschata). The present study displays initial insights into the knowledge of the disease in western Argentina, including the determination of the prevalent species causing CPM, as well as the evaluation of the resistance of squash cultivars and breeding lines. Fungal colonies were isolated from samples collected in Mendoza province, Argentina. A field trial was also performed to assess the resistance of five squash accessions, including commercial cultivars and breeding lines. The severity of CPM was analyzed and epidemiological models were built based on empirical data. The morphological determinations and analysis with specific molecular markers confirmed Podosphaera xanthi as the prevalent causal agent of CPM in Mendoza. The results od the field trial showed differences in the resistance trait among the squash accessions. The advanced breeding line BL717/1 showed promising results as source of CPM resistance for the future development of open pollinated resistant cultivars, a crucial tool for an integrative control of the disease.

A Study on the Comparison of Predictive Models of Cardiovascular Disease Incidence Based on Machine Learning

  • Ji Woo SEOK;Won ro LEE;Min Soo KANG
    • 한국인공지능학회지
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, a study was conducted to compare the prediction model of cardiovascular disease occurrence. It is the No.1 disease that accounts for 1/3 of the world's causes of death, and it is also the No. 2 cause of death in Korea. Primary prevention is the most important factor in preventing cardiovascular diseases before they occur. Early diagnosis and treatment are also more important, as they play a role in reducing mortality and morbidity. The Results of an experiment using Azure ML, Logistic Regression showed 88.6% accuracy, Decision Tree showed 86.4% accuracy, and Support Vector Machine (SVM) showed 83.7% accuracy. In addition to the accuracy of the ROC curve, AUC is 94.5%, 93%, and 92.4%, indicating that the performance of the machine learning algorithm model is suitable, and among them, the results of applying the logistic regression algorithm model are the most accurate. Through this paper, visualization by comparing the algorithms can serve as an objective assistant for diagnosis and guide the direction of diagnosis made by doctors in the actual medical field.

Internet-based Information System for Agricultural Weather and Disease and Insect fast management for rice growers in Gyeonggi-do, Korea

  • S.D. Hong;W.S. Kang;S.I. Cho;Kim, J.Y.;Park, K.Y;Y.K. Han;Park, E.W.
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.108.2-109
    • /
    • 2003
  • The Gyeonggi-do Agricultural Research and Extension Services has developed a web-site (www.epilove.com) in collaboration with EPINET to provide information on agricultural weather and rice disease and insect pest management in Gyeonggi-do. Weather information includes near real-time weather data monitored by automated weather stations (AWS) installed at rice paddy fields of 11 Agricultural Technology Centers (ATC) in Gyeonggi-do, and weekly weather forecast by Korea Meteorological Administration (KMA). Map images of hourly air temperature and rainfall are also generated at 309m x 309m resolution using hourly data obtained from AWS installed at 191 locations by KMA. Based on near real-time weather data from 11 ATC, hourly infection risks of rice blast, sheath blight, and bacterial grain rot for individual districts are estimated by disease forecasting models, BLAST, SHBLIGHT, and GRAINROT. Users can diagnose various diseases and insects of rice and find their information in detail by browsing thumbnail images of them. A database on agrochemicals is linked to the system for disease and insect diagnosis to help users search for appropriate agrochemicals to control diseases and insect pests.

  • PDF

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.