• Title/Summary/Keyword: Disease Tolerant

Search Result 60, Processing Time 0.031 seconds

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

Improvement of Abiotic Stress Resilience for Stable Rice Production

  • Dongjin Shin;Hyunggon Mang;Jiyun Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.13-13
    • /
    • 2022
  • Recently, stable crop production is threatened by the effects of climate change. In particular, it is difficult to consistently maintain agricultural policies due to large price fluctuations depending on the difference in total domestic rice production from year to year. For stable rice production amid changes in the crop growing environment, development of varieties with improved disease resistance and abiotic stress stability is becoming more important. In here, drought and cold tolerant trait have been studied. First, for the development of drought tolerant varieties, we analyzed which agricultural traits are mainly affected by domestic drought conditions. As a result, it was observed that drought caused by the lack of water during transplanting season inhibits the development of the number of tiller and reduces the yield. 'Samgang' was selected as a useful genetic resource with strong drought tolerant and stable tiller number development even under drought conditions by phenotype screening. Three of drought tolerant QTLs were identified using doubled haploid (DH) population derived from a cross between Nacdong and Samgang, a drought sensitive and a tolerant, respectively. Among these QTLs, when qVDT2 and qVDTl1 were integrated, it was investigated that the tiller number development was relatively stable in the rainfed paddy field conditions. It is known that the high-yielding Tongil-type cultivars are severely affected by cold stress throughout the entire growth stage. In this study, we established conditions that can test the cold tolerance phenotype with alternate temperature to treat low temperatures in indoor growth conditions similar to those in field conditions at seedling stage. Three cold tolerant QTLs were explored using population derived from a cross between Hanareum2 (cold sensitive variety, Tongil-type) and Unkwang (cold tolerant variety, Japonica). Among these QTLs, qSCT12 showed strong cold tolerant phenotype, and when all of three QTLs were integrated, it was investigated that cold tolerant score was relatively similar to its donor parent, Unkwang, in our experimental conditions. We are performing that development of new variety with improved cold tolerant through the introduction of these QTLs.

  • PDF

Isolation and Identification of Alkali-tolerant Bacteria from Near-Shore Soils in Dokdo Island

  • Namirimu, Teddy;Kim, Jinnam;Zo, Young-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Saline or alkaline condition in soil inhibits growth of most crop plants and limits crop yields in many parts of the world. Augmenting an alkaline soil with alkali-tolerant bacteria capable of promoting plant growth can be a promising approach in expanding fertile agricultural land. Near-shore environments of Dokdo Island, a remote island located in the middle of the East Sea, appear to have patches of seawater-influenced haloalkaline soil that is unsupportive for growth of conventional plants. To exploit metabolic capacities of alkali-tolerant bacteria for promoting plant growth in saline or alkaline soils, we isolated of alkali-tolerant bacteria from near-shore soil samples in Dokdo and investigated properties of the isolates. Alkali-tolerant bacteria were selectively cultivated by inoculating suspended and diluted soil samples on a plate medium adjusted to pH 10. Fifty colonies were identified based on their $GTG_5$-PCR genomic fingerprints and 16S rRNA gene sequences. Most isolates were affiliated to alkali-tolerant and/or halotolerant genera or species of the phyla Firmicutes (68%), Proteobacteria (30%) and Actinobacteria (2%). Unlike the typical soil bacterial flora in the island, alkali-tolerant isolates belonged to only certain taxa of terrestrial origin under the three phyla, which have traits of plant growth promoting activities including detoxification, phytohormone production, disease/pest control, nitrogen-fixation, phosphate solubilization or siderophore production. However, Firmicutes of marine origin generally dominated the alkali-tolerant community. Results of this study suggest that haloalkaline environments like Dokdo shore soils are important sources for plant growth promoting bacteria that can be employed in bio-augmentation of vegetation-poor alkaline soils.

Molecular Breeding for Plant Disease Resistance : Prospects and Problems

  • Park, Hyo-Guen
    • The Plant Pathology Journal
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The technique of plant transformation has started to show off its great power in the area of plant breeding by commercially successful introduction of transgenic varieties such as herbicide tolerant soybean and insect resistant corn in USA with an unimaginable speed. However, in contrast with the great success in the commercialization of herbicide tolerance and insect resistance, the transformation works on disease resistance has not yet reached the stage of full commercialization. This review surveys the current status of molecular breeding for plant disease resistance and their limits and problems. Some novel ideas and approaches in molecular breeding for disease resistance are introduced.

  • PDF

Global Functional Analysis of Butanol-Sensitive Escherichia coli and Its Evolved Butanol-Tolerant Strain

  • Jeong, Haeyoung;Lee, Seung-Won;Kim, Sun Hong;Kim, Eun-Youn;Kim, Sinyeon;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1171-1179
    • /
    • 2017
  • Butanol is a promising alternative to ethanol and is desirable for use in transportation fuels and additives to gasoline and diesel fuels. Microbial production of butanol is challenging primarily because of its toxicity and low titer of production. Herein, we compared the transcriptome and phenome of wild-type Escherichia coli and its butanol-tolerant evolved strain to understand the global cellular physiology and metabolism responsible for butanol tolerance. When the ancestral butanol-sensitive E. coli was exposed to butanol, gene activities involved in respiratory mechanisms and oxidative stress were highly perturbed. Intriguingly, the evolved butanol-tolerant strain behaved similarly in both the absence and presence of butanol. Among the mutations occurring in the evolved strain, cis-regulatory mutations may be the cause of butanol tolerance. This study provides a foundation for the rational design of the metabolic and regulatory pathways for enhanced biofuel production.

Current Status of Cashew Leaf and Nut Blight Disease (Cryptosporiopsis spp.) and Screening of Elite Cashew Hybrids Developed in 1996 and 1998 against the Disease in Eastern and Southern Tanzania

  • Majune, Dadili Japhet;Masawe, Peter Albert;Mbega, Ernest Rashid
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.265-275
    • /
    • 2018
  • Cashew (Anacardium occidentale L.) is an export crop and source of income in Tanzania. However, its productivity is challenged by insect pests and diseases. Cashew Leaf and Nut Blight Disease (CLNBD) caused by Cryptosporipsis spp. has been cited as one of the most devastating diseases in Tanzania. Studies were conducted to investigate incidences and severities of CLNBD on cashew in farmers' fields and elite cashew hybrids developed in 1996 and 1998 in eastern and southern zones of Tanzania. Furthermore, a screen house experiment was conducted to screen these hybrids against CLNBD at Naliendele Agricultural Research Institute (NARI), Mtwara, Tanzania. The results indicated significant differences (P<0.001) in CLNBD incidences and severities in cashew in farmers' fields across Bagamoyo, Nachingwea and Mtwara districts. Further, there were significant differences (P<0.001) among hybrids in CLNBD severities in the screen house experiment. In ranking the elite cashew hybrids, 38 were tolerant and 14 were susceptible to CLNBD. This observation suggests that elite cashew hybrids developed in 1996 and 1998 are more tolerant to CLNBD compared to cashew found in farmers' fields. These findings strongly suggest that the elite cashew hybrids can be recommended for commercial farming in Tanzania.

Evaluation of Bt-cotton Genotypes for Resistance to Cotton Leaf Curl Disease under High Inoculum Pressure in the Field and Using Graft Inoculation in Glasshouse

  • Akhtar, Khalid Pervaiz;Hussain, Manzoor;Hassan, Mahmood-Ul;Sarwar, Muhammad;Sarwar, Nighat
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.132-139
    • /
    • 2015
  • Bt-cotton germplasm, consisting of 75 genotypes was evaluated against cotton leaf curl disease (CLCuD) under high inoculum pressure in the field and using graft inoculation in glasshouse by visual symptom scoring assessments. None of the tested genotype was found disease free under both evaluation tests. Under field conditions in 2011, 3 genotypes were found resistant, 4 moderately resistant, 3 tolerant, 2 moderately susceptible and one susceptible; in 2012, 3 genotypes were tolerant, 7 moderately susceptible, 5 susceptible and 38 highly susceptible; in 2013, one was moderately susceptible and 51 were highly susceptible with varying degree of percent disease index (PDI) and severity index (SI). However, through graft evaluation in glasshouse, none of the graft inoculated plant was symptomless. All tested genotypes showed disease symptoms with SI values ranging between 5.0 and 6.0, and latent period between 12 and 14 days. Of the 75 genotypes evaluated using graft inoculation, 11 were found susceptible with SI values of 5.0 to 5.4 while remaining 64 were highly susceptible with SI values of 5.5 to 6.0. Inoculated plants of all tested genotypes exhibited severe disease symptoms within 10 days after the appearance of initial symptoms. No reduction in SI value was observed until the end of the experiment i.e., 90 days after grafting. Information generated under the present study clearly demonstrates that no sources of resistance to CLCuD are available among the tested Bt-cotton genotypes. So, a breeding programme is needed to introgress the CLCuD-resistance from other resistant sources to agronomically suitable Bt-cotton genotypes.

Autoimmunity (자가 면역)

  • Kim, Joong Gon
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • Self/non-self discrimination and unresponsiveness to self is the fundamental properties of the immune system. Self-tolerance is a state in which the individual is incapable of developing an immune response to an individual's own antigens and it underlies the ability to remain tolerant of individual's own tissue components. Several mechanisms have been postulated to explain the tolerant state. They can be broadly classified into two groups: central tolerance and peripheral tolerance. Several mechanisms exist, some of which are shared between T cells and B cells. In central tolerance, the recognition of self-antigen by lymphocytes in bone marrow or thymus during development is required, resulting in receptor editing (revision), clonal deletion, anergy or generation of regulatory T cells. Not all self-reactive B or T cells are centrally purged from the repertoire. Additional mechanisms of peripheral tolerance are required, such as anergy, suppression, deletion or clonal ignorance. Tolerance is antigen specific. Generating and maintaining the self-tolerance for T cells and B cells are complex. Failure of self-tolerance results in immune responses against self-antigens. Such reactions are called autoimmunity and may give rise to autoimmune diseases. Development of autoimmune disease is affected by properties of the genes of the individual and the environment, both infectious and non-infectious. The host's genes affect its susceptibility to autoimmunity and the environmental factors promote the activation of self-reactive lymphocytes, developing the autoimmunity. The changes in participating antigens (epitope spreading), cells, cytokines or other inflammatory mediators contribute to the progress from initial activation to a chronic state of autoimmune diseases.

Field Evaluation of Mungbean Recombinant Inbred Lines against Mungbean Yellow Mosaic Disease Using New Disease Scale in Thailand

  • Akhtar, Khalid P.;Kitsanachandee, R.;Srinives, P.;Abbas, G.;Asghar, M.J.;Shah, T.M.;Atta, B.M.;Chatchawankanphanich, O.;Sarwar, G.;Ahmad, M.;Sarwar, N.
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.422-428
    • /
    • 2009
  • Studies were conducted to identify the sources of resistance in mungbean recombinant inbred lines (RILs) in Thailand against mungbean yellow mosaic disease (MYMD). 146 mungbean RILs in $F_8$ series were evaluated in a field including resistant parent NM-10-12-1 and susceptible parent KPS 2 during summer 2008 under high inoculum pressure. The RILs were subsequently scored for disease symptom severity ratings (DSSR) using a new scale. Observations regarding DSSR and % disease index (%DI) showed that the tested RILs responded differently to the disease. A large number of RILs (132) were found highly susceptible, 12 were susceptible, 3 were tolerant and one was resistant. Overall screening results showed that three RILs, viz. line no. 30, 100 and 101 had minimum DSSR and % disease index thus they are good source of resistance to MYMD in spite of high disease pressure and can therefore be used directly as varieties to manage the disease in Thailand.

Tolerance of Agaricus bisporus to Bacterial Brown Blotch by Pseudomonads (세균성갈색무늬병에 대한 양송이 내성 검증)

  • Kim, Woo-Hyun;Kwon, Tae-Ryong;Kim, Yong-Gyun;Kwon, Soon Wook;Oh, Youn-Lee;Kang, Min-Gu
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.370-376
    • /
    • 2017
  • Pseudomonads cause bacterial brown blotch disease, which causes great damage to the common mushroom Agaricus bisporus. The tolerance of A. bisporus to pseudomonads was tested and found to not be correlated with mycelium growth ability. The offsprings of the tolerant strain (ASI1085) to pseudomonads were not as tolerant as their parents in the mycelium stage. But, tolerance decreased compared to mycelium in the fruiting body. The offsprings of the weakly tolerant strain (ASI1321) were even more weak in the mycelium stage. It is presumed that the tolerance of the parents is transferred to later generations. The tolerance in the mycelium was not correlated in the fruiting body. Therefore, the browning of the fruiting body is thought to be induced by other factors. Pseudomonas tolaasii caused higher browning than Pseudomonas agarici. Pseudomonas reactans did not have a significant effect on the mycelium, but affected the browning of the fruit bodies. P. agarici had higher ability to inhibit mycelium growth than fruiting body growth.