• Title/Summary/Keyword: Discriminant Model

Search Result 520, Processing Time 0.025 seconds

A Study on the Optimal Discriminant Model Predicting the likelihood of Insolvency for Technology Financing (기술금융을 위한 부실 가능성 예측 최적 판별모형에 대한 연구)

  • Sung, Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.2
    • /
    • pp.183-205
    • /
    • 2007
  • An investigation was undertaken of the optimal discriminant model for predicting the likelihood of insolvency in advance for medium-sized firms based on the technology evaluation. The explanatory variables included in the discriminant model were selected by both factor analysis and discriminant analysis using stepwise selection method. Five explanatory variables were selected in factor analysis in terms of explanatory ratio and communality. Six explanatory variables were selected in stepwise discriminant analysis. The effectiveness of linear discriminant model and logistic discriminant model were assessed by the criteria of the critical probability and correct classification rate. Result showed that both model had similar correct classification rate and the linear discriminant model was preferred to the logistic discriminant model in terms of criteria of the critical probability In case of the linear discriminant model with critical probability of 0.5, the total-group correct classification rate was 70.4% and correct classification rates of insolvent and solvent groups were 73.4% and 69.5% respectively. Correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify the present sample. However, the actual correct classification rate is an estimate of the probability that the estimated discriminant function will correctly classify a future observation. Unfortunately, the correct classification rate underestimates the actual correct classification rate because the data set used to estimate the discriminant function is also used to evaluate them. The cross-validation method were used to estimate the bias of the correct classification rate. According to the results the estimated bias were 2.9% and the predicted actual correct classification rate was 67.5%. And a threshold value is set to establish an in-doubt category. Results of linear discriminant model can be applied for the technology financing banks to evaluate the possibility of insolvency and give the ranking of the firms applied.

  • PDF

A Study of Discriminant Analysis about Korean Quick Response System Adoption (국내(國內) 신속대응(迅速對應)시스템 도입업체(導入業體)의 판별분석(判別分析) 연구(硏究))

  • Ko, Eun-Ju
    • Journal of Fashion Business
    • /
    • v.4 no.3
    • /
    • pp.103-114
    • /
    • 2000
  • The purpose of this study was to test the discriminant analysis model of Quick Response system and to examine the detailed relationship between each discriminant factor and Quick Response adoption. In this discriminant analysis model of Quick Response system, firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits were included as discriminant factors. Onehundred and two subjects were randomly selected for the survey study and discriminant analysis, descriptive analysis, t-test, and x square test were used for the data analysis. The results of this study were: 1. Wilks Lambda and F value support the discriminant analysis model that, taken together firm size, strategic type, product category, fashion trend, selling time and the Quick Response benefits significantly help to explain Quick Response adoption. 2. The importance of discriminant ability was, in order, firm size, the Quick Response benefits, women's wear, fashion trend, analyzer, selling time, reactor, defender and men's wear. 3. The discriminant function had the high hit ratio, so this can be well used for the classification of Quick Response adoption/nonadoption.

  • PDF

A Comparison of the Discrimination of Business Failure Prediction Models (부실기업예측모형의 판별력 비교)

  • 최태성;김형기;김성호
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.

A Study on Predicting Bankruptcy Discriminant Model for Small-Sized Venture Firms using Technology Evaluation Data (기술력평가 자료를 이용한 중소벤처기업 파산예측 판별모형에 관한 연구)

  • Sung Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.9 no.2
    • /
    • pp.304-324
    • /
    • 2006
  • There were considerable researches by finance people trying to find out business ratios as predictors of corporate bankruptcy. However, such financial ratios usually lack theoretical justification to predict bankruptcy for technology-oriented small sized venture firms. This study proposes a bankruptcy predictive discriminant model using technology evaluation data instead of financial data, evaluates the model fit by the correct classification rate, cross-validation method and M-P-P method. The results indicate that linear discriminant model was found to be more appropriate model than the logistic discriminant model and 69% of original grouped data were correctly classified while 67% of future data were expected to be classified correctly.

  • PDF

Comparison of Alternative knowledge Acquisition Methods for Allergic Rhinitis

  • Chae, Young-Moon;Chung, Seung-Kyu;Suh, Jae-Gwon;Ho, Seung-Hee;Park, In-Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.91-109
    • /
    • 1995
  • This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).

  • PDF

Model for Predicting Success of Partnering in Vietnam: A Discriminant Analysis Approach

  • Long, Le-Hoai;Lee, Young-Dai;Oh, Guk-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.5
    • /
    • pp.84-94
    • /
    • 2010
  • Partnering concept has been mentioned as an innovative arrangement that helps to reduce many of the disadvantages of the traditional arrangement. Partnering in construction has been widely applied in Vietnam from late 1990s. The application of the new has arrangement spread thanks to anecdotal proofs. This concept is quite new to Vietnamese practitioners. It is necessary to conduct study as a lesson-learn of the industry to encourage the partnering implementation. This paper attempts to develop a model, using discriminant analysis, which classifies the partnering in construction projects into success levels. Dedication, teamwork, sufficiency, and balance are the four significant components in discriminant model. The proposed model is helpful to practitioners in developing, adjusting and improving their strategy for partnering implementation.

Evaluating Distress Prediction Models for Food Service Franchise Industry (외식프랜차이즈기업 부실예측모형 예측력 평가)

  • KIM, Si-Joong
    • Journal of Distribution Science
    • /
    • v.17 no.11
    • /
    • pp.73-79
    • /
    • 2019
  • Purpose: The purpose of this study was evaluated to compare the predictive power of distress prediction models by using discriminant analysis method and logit analysis method for food service franchise industry in Korea. Research design, data and methodology: Forty-six food service franchise industry with high sales volume in the 2017 were selected as the sample food service franchise industry for analysis. The fourteen financial ratios for analysis were calculated from the data in the 2017 statement of financial position and income statement of forty-six food service franchise industry in Korea. The fourteen financial ratios were used as sample data and analyzed by t-test. As a result seven statistically significant independent variables were chosen. The analysis method of the distress prediction model was performed by logit analysis and multiple discriminant analysis. Results: The difference between the average value of fourteen financial ratios of forty-six food service franchise industry was tested through t-test in order to extract variables that are classified as top-leveled and failure food service franchise industry among the financial ratios. As a result of the univariate test appears that the variables which differentiate the top-leveled food service franchise industry to failure food service industry are income to stockholders' equity, operating income to sales, current ratio, net income to assets, cash flows from operating activities, growth rate of operating income, and total assets turnover. The statistical significances of the seven financial ratio independent variables were also confirmed by logit analysis and discriminant analysis. Conclusions: The analysis results of the prediction accuracy of each distress prediction model in this study showed that the forecast accuracy of the prediction model by the discriminant analysis method was 84.8% and 89.1% by the logit analysis method, indicating that the logit analysis method has higher distress predictability than the discriminant analysis method. Comparing the previous distress prediction capability, which ranges from 75% to 85% by discriminant analysis and logit analysis, this study's prediction capacity, which is 84.8% in the discriminant analysis, and 89.1% in logit analysis, is found to belong to the range of previous study's prediction capacity range and is considered high number.

An Application of the Balanced Quadratic Classification Rule on the Discriminant Analysis in Growth Curve Model (성장곡선모형의 판별분석에서 균형이차분류법의 적용)

  • Shim, Kyu-Bark
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.2
    • /
    • pp.53-67
    • /
    • 1995
  • The problem considered here is to find the optimal discriminant analysis method in growth curve model. It has been studied how to find correct prior probability for the effective classification in discriminant analysis. We use the balanced condition to calculate prior probability. From the informative simulation study, new classification rule for the growth curve model is suggested. The suggested classification rule has better classification result than the other previously suggested method in terms of error rate criterion.

  • PDF

Discriminant Model V for Syndrome Differentiation Diagnosis based on Sex in Stroke Patients (성별을 고려한 중풍 변증진단 판별모형개발(V))

  • Kang, Byoung-Kab;Lee, Jung-Sup;Ko, Mi-Mi;Kwon, Se-Hyug;Bang, Ok-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.138-143
    • /
    • 2011
  • In spite of abundant clinical resources of stroke patients, the objective and logical data analyses or diagnostic systems were not established in oriental medicine. As a part of researches for standardization and objectification of differentiation of syndromes for stroke, in this present study, we tried to develop the statistical diagnostic tool discriminating the 4 subtypes of syndrome differentiation using the essential indices considering the sex. Discriminant analysis was carried out using clinical data collected from 1,448 stroke patients who was identically diagnosed for the syndrome differentiation subtypes diagnosed by two clinical experts with more than 3 year experiences. Empirical discriminant model(V) for different sex was constructed using 61 significant symptoms and sign indices selected by stepwise selection. We comparison. We make comparison a between discriminant model(V) and discriminant model(IV) using 33 significant symptoms and sign indices selected by stepwise selection. Development of statistical diagnostic tool discriminating 4 subtypes by sex : The discriminant model with the 24 significant indices in women and the 19 significant indices in men was developed for discriminating the 4 subtypes of syndrome differentiation including phlegm-dampness, qi-deficiency, yin-deficiency and fire-heat. Diagnostic accuracy and prediction rate of syndrome differentiation by sex : The overall diagnostic accuracy and prediction rate of 4 syndrome differentiation subtypes using 24 symptom and sign indices was 74.63%(403/540) and 68.46%(89/130) in women, 19 symptom and sign indices was 72.05%(446/619) and 70.44%(112/159) in men. These results are almost same as those of that the overall diagnostic accuracy(73.68%) and prediction rate(70.59%) are analyzed by the discriminant model(IV) using 33 symptom and sign indices selected by stepwise selection. Considering sex, the statistical discriminant model(V) with significant 24 symptom and sign indices in women and 19 symptom and sign indices in men, instead of 33 indices would be used in the field of oriental medicine contributing to the objectification of syndrome differentiation with parsimony rule.

Development of Discriminant Model of PIH Pregnant using Decision Tree

  • Park, Young-Sun;Choi, Hang-Suk;Cha, Kyung-Joon;Park, Moon-Il
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • The various methods have been studied to develop discriminant model for pregnancy induced hypertension(PIH) as high risk pregnant. In this study, we adapt the approximate entropy which is the non-linear chaotic measuring method. Then, we develop a system to discriminant PIH pregnant using QUEST with S-PLUS.

  • PDF