• Title/Summary/Keyword: Discrete frequency noise

Search Result 169, Processing Time 0.024 seconds

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H.J.;Lee, S.B.;Fujisawa, N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.646-651
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The results indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

Flow and Noise Characteristics of NACA0018 by Large-Eddy Simulation (LES를 이용한 NACA0018 에어포일 주위의 유동 및 이산소음계산)

  • KIM, H.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.433-438
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was numerically studied and compared with experimental datum. The numerical simulation was carried out by LES which employs a deductive dynamic model as subgrid-scale model. The result of an attack angle of $6^{\circ}$ indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H. J.;Lee, S.;N. Fujisawa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.365.2-365
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The numerical simulation was carried out by LES. (omitted)

  • PDF

Numerical Study on Discrete and Broadband Noise Generated from Horizontal Axis Wind Turbine Blade (수평축 풍력터빈 블레이드의 이산소음과 광역소음의 수치해석)

  • Ryu, Ki-Wahn;Yu, Byung-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.315-318
    • /
    • 2008
  • Numerical calculation for the 1MW class horizontal axis wind turbine blade has been carried out to estimate the magnitude between discrete noise and random noise. Farassat formula 1A was adopted to get the discrete noise signal, and blade element momentum theory was used to obtain the distribution of the aerodynamic data along the blade span. Fukano's approach was also adopted to calculate the unsteady aerodynamic random noise due to the Karman vortex generation at the trailing edge of the wind turbine blade. From the noise prediction for the 1MW class horizontal axis wind turbine, the frequency band of the discrete noise lies in the infrasound region, and that of the random noise lies in the audible band region.

  • PDF

Prediction of Frequency Modulation of BPF Tonal Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성유동 해석에 의한 부등피치 횡류홴의 BPF 순음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.286-293
    • /
    • 2003
  • The unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by computational methods. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer. and the sound pressure is predicted using Curie's equation. The discrete noise characteristics of three impellers with a uniform and two random pitch (type-A and -B) blades are compared by their SPL (Sound Pressure Level) spectra. and the frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are discussed. Besides. a mathematical model is proposed for the prediction of discrete blade tonal noise and is validated with available experimental data. The fan performance is also compared with experimental data. indicating that the random pitch effect does not significantly alter the performance characteristics at ${\phi}$ 〉 0.4

Prediction of Frequency Modulation of Discrete Noise for Random Pitch Cross-Flow Fans by Unsteady Viscous Flow Computations (비정상 점성 유동 해석에 의한 부등피치 횡류홴의 이산소음 주파수 변조 특성 예측)

  • Cho, Yong;Moon, Young-J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.658-664
    • /
    • 2002
  • Unsteady flow characteristics and associated blade tonal noise of a cross-flow fan are predicted by a computational method. The incompressible Navier-Stokes equations are time-accurately solved for obtaining the pressure fluctuations between the rotating blades and the stabilizer, and sound pressure is predicted using Curie's equation. The computed fan performance is favorably compared with experimental data, and also indicates that the performance is not significantly altered by the random pitch effect at ${\phi}>0.4$. In the present study, the narrow-band noise characteristics of three impellers with a uniform and two random Pitch (type-A and-B) blades are compared by the SPL (Sound Pressure Level) spectra, and their frequency modulation characteristics of the BPF (Blade Passing Frequency) noise are also discussed.

  • PDF

A Study on the Noise Reduction of the Engine cooling Fan used an Express Bus (고속 버스용 엔진 냉각 팬의 저소음화 연구)

  • Oh, Jae-Eung;Sim, Hyoun-Jin;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.279-284
    • /
    • 2002
  • In this study, it has been developed the program for predicting the noise spectrum of axial flow fan. The radiated acoustic pressure is expressed the discrete frequency noise peaks at BPF(Blade passage frequency) and its harmonics by Wu's method and the line spectrum at the broad band by Wright's method. And this paper presents the characteristics of a fan noise due to modify the design parameters. Accordingly, it is obtained the design parameter values for noise reduction of fan.

  • PDF

Aerodynamic Noise Prediction of Subsonic Rotors

  • Lee, Jeong-Han;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.29-34
    • /
    • 1997
  • Numerical prediction of aerodynamic noise radiated by subsonic rotors are carried out. A computer program has been developed which incorporates both the discrete frequency noise as well as the broadband noise arising from the ingestion of turbulence. Acoustic analogy is used in conjunction with Homicz's formulation of turbulence ingestion noise. Formulation 1A of Farassat is used to enhance the numerical analysis performance of Ffowcs-Williams Hawkings equation by eliminating the numericla time differentiation. Homicz's trubulence ingestion noise prediction technique is used to understand the characteristics of broadband noise radiated by isotropic trubulence in gestion. Numerical predictions are carried out for a number of rotor configurations and compared with experimental data. Monopole consideration of transonic rotor agrees well with both the experimental data and the linear theory. Noise radiation characteristics of rotor at lifting hover are investigated utilizing simple blade loading obtained by thin wing section theory. By incorporating discrete noise prediction of steady loading with broadband spectrum, much better agreement with experimental data is obtained in the low frequency region. The contributions from different noise mechanisms can also be analyzed through this method.

  • PDF

Design of the fast adaptive digital filter for canceling the noise in the frequency domain (주파수 영역에서 잡음 제거를 위한 고속 적응 디지털 필터 설계)

  • 이재경;윤달환
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the high speed noise reduction processing system using the modified discrete fourier transform(MDFT) on the frequency domain. The proposed filter uses the linear prediction coefficients of the adaptive line enhance(ALE) method based on the Sign algorithm The signals with a random noise tracking performance are examined through computer simulations. It is confirmed that the fast adaptive digital filter is realized by the high speed adaptive noise reduction(HANR) algorithm with rapid convergence on the frequency domain(FD).

A Study on the Noise Reduction of the Engine Cooing Fan of a Express Bus by Modification of Design Parameters (설계 파라미터 변경에 의한 고속 버스용 엔진 냉각 홴의 저소음화 연구)

  • 이유엽;조용구;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.258-265
    • /
    • 2003
  • This paper suggests the noise reduction method of the engine cooling fan. The fan noise contribution to the OASPL of engine room was estimated and the noise source was identified for the rotating fan by sound intensity method. And the program for Predicting the noise spectrum of axial flow fan was also developed. The radiated acoustic pressure is expressed in terms of discrete frequency noise Peaks at BPF and its harmonics and the line spectrum at the broad band by the proposed noise generation mechanisms. In this Paper, it Is shown that the comparison of the measured and calculated noise spectra of fan validates the noise predicting program. And this paper presents the characteristics of the fan noise in order to modify the design parameters. Accordingly, the design parameters were determined for the noise reduction of the fan.