• Title/Summary/Keyword: Discrete Principal Component Analysis(dPCA)

Search Result 4, Processing Time 0.017 seconds

A Study on Modeling of Fighter Pilots Using a dPCA-HMM (dPCA-HMM을 이용한 전투기 조종사 모델링 연구)

  • Choi, Yerim;Jeon, Sungwook;Park, Jonghun;Shin, Dongmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Modeling of fighter pilots, which is a fundamental technology for war games using defense M&S (Modeling & Simulation) becomes one of the prominent research issues as the importance of defense M&S increases. Especially, the recent accumulation of combat logs makes it possible to adopt statistical learning methods to pilot modeling, and an HMM (Hidden Markov Model) which is able to utilize the sequential characteristic of combat logs is suitable for the modeling. However, since an HMM works only by using one type of features, discrete or continuous, to apply an HMM to heterogeneous features, type integration is required. Therefore, we propose a dPCA-HMM method, where dPCA (Discrete Principal Component Analysis) is combined with an HMM for the type integration. From experiments conducted on combat logs acquired from a simulator furnished by agency for defense development, the performance of the proposed model is evaluated and was satisfactory.

Study On The Robustness Of Face Authentication Methods Under illumination Changes (얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구)

  • Ko Dae-Young;Kim Jin-Young;Na Seung-You
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.9-16
    • /
    • 2005
  • This paper focuses on the study of the face authentication system and the robustness of fact authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as fellows; PCA(Principal Component Analysis), GMM(Gaussian Mixture Modeis), 1D HMM(1 Dimensional Hidden Markov Models), Pseudo 2D HMM(Pseudo 2 Dimensional Hidden Markov Models). Experiment results involving an artificial illumination change to fate images are compared with each other. Face feature vector extraction based on the 2D DCT(2 Dimensional Discrete Cosine Transform) if used. Experiments to evaluate the above four different fate authentication methods are carried out on the ORL(Olivetti Research Laboratory) face database. Experiment results show the EER(Equal Error Rate) performance degrade in ail occasions for the varying ${\delta}$. For the non illumination changes, Pseudo 2D HMM is $2.54{\%}$,1D HMM is $3.18{\%}$, PCA is $11.7{\%}$, GMM is $13.38{\%}$. The 1D HMM have the bettor performance than PCA where there is no illumination changes. But the 1D HMM have worse performance than PCA where there is large illumination changes(${\delta}{\geq}40$). For the Pseudo 2D HMM, The best EER performance is observed regardless of the illumination changes.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Stereo Vision Based 3D Input Device (스테레오 비전을 기반으로 한 3차원 입력 장치)

  • Yoon, Sang-Min;Kim, Ig-Jae;Ahn, Sang-Chul;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.429-441
    • /
    • 2002
  • This paper concerns extracting 3D motion information from a 3D input device in real time focused to enabling effective human-computer interaction. In particular, we develop a novel algorithm for extracting 6 degrees-of-freedom motion information from a 3D input device by employing an epipolar geometry of stereo camera, color, motion, and structure information, free from requiring the aid of camera calibration object. To extract 3D motion, we first determine the epipolar geometry of stereo camera by computing the perspective projection matrix and perspective distortion matrix. We then incorporate the proposed Motion Adaptive Weighted Unmatched Pixel Count algorithm performing color transformation, unmatched pixel counting, discrete Kalman filtering, and principal component analysis. The extracted 3D motion information can be applied to controlling virtual objects or aiding the navigation device that controls the viewpoint of a user in virtual reality setting. Since the stereo vision-based 3D input device is wireless, it provides users with a means for more natural and efficient interface, thus effectively realizing a feeling of immersion.