• Title/Summary/Keyword: Discrete Optimization

Search Result 508, Processing Time 0.029 seconds

A Study on Improvement in the Resistance Performance of Planing hulls by Hull Shape Optimization (고속활주선의 선형 최적화를 통한 저항성능 개선에 관한 연구)

  • Kim, Sunbum
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • This paper describes the method of hull shape optimization to improve the resistance performance of planing hulls when a reference hull shape and its principal dimensions are given. First, the planing hull of precedent research is adopted as the reference hull and an optimization problem is formulated by defining hull shape parameters. The search space of this research is discretized for computing cost and DPSO(Discrete binary version of Particle Swarm Optimization) method is used to solve the optimization problem. As the result of optimization, the decrease of resistance is confirmed from the comparison between the reference hull's and the modified hull's planing performance from computational results.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

DEVELOPMENT OF A TABU SEARCH HEURISTIC FOR SOLVING MULTI-OBJECTIVE COMBINATORIAL PROBLEMS WITH APPLICATIONS TO CONSTRUCTING DISCRETE OPTIMAL DESIGNS

  • JOO SUNG JUNG;BONG JIN YUM
    • Management Science and Financial Engineering
    • /
    • v.3 no.1
    • /
    • pp.75-88
    • /
    • 1997
  • Tabu search (TS) has been successfully applied for solving many complex combinatorial optimization problems in the areas of operations research and production control. However, TS is for single-objective problems in its present form. In this article, a TS-based heuristic is developed to determine Pareto-efficient solutions to a multi-objective combinatorial optimization problem. The developed algorithm is then applied to the discrete optimal design problem in statistics to demonstrate its usefulness.

  • PDF

A Development on the Optimization Algorithm for MDCT/IMDCT of MPEG-2 AAC (MPEG-2 AAC의 MDCT/IMDCT를 위한 최적 알고리즘 개발)

  • 김병규;이강현
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.538-541
    • /
    • 1999
  • MPEG-2 AAC(Advanced Audio Coding) is the most advanced coding scheme available for high quality audio coding. This MPEG-2 AAC audio Standard allows for ITU-R ‘indistinguishable’ quality according to at data rates of 320 kb/s for five full-bandwidth channel audio signals. The compression ratio is around a factor of 1.4 better compared to MPEG Layer 3, you get the same quality at 70% of the bitrate. This paper suggest optimization method for MDCT/IMDCT (Modified Discrete Cosine Transform/Inverse Modified Discrete Cosine Transform) in Encoder and Decoder for AAC.

  • PDF

The Staffing Problem at the Call Center by Optimization and Simulation (최적화와 시뮬레이션을 이용한 콜센터의 인력 배치 연구)

  • Kim, Seong-Moon;Nah, Jeong-Eun;Kim, Su-Mi
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.40-50
    • /
    • 2011
  • We develop a nonlinear integer programming model which minimizes the total cost with the optimal number of operators to hire and their optimal allocation to the tasks under the diverse constraints such as the weekly, daily, and hourly maximum allowable abandonment rates for the time-varying inbound call volume. We present a case study based on actual data at a call center, in order to prove the validity of applying the optimization method proposed. By the one-sample two-tailed t-test, we confirm that the expected abandonment rates resulting from the optimization method are identical with the ones from the discrete-event simulation within specified confidence intervals.

Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables (이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법)

  • 윤기찬;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

Decision Variable Design of Discrete Systems using Simulation Optimization (시뮬레이션 최적화를 이용한 이산형 시스템의 결정변수 설계)

  • 박경종
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.63-69
    • /
    • 1999
  • The research trend of the simulation optimization has been focused on exploring continuous decision variables. Yet, the research in discrete decision variable area has not been fully studied. A new research trend for optimizing discrete decision variables ha just appeared recently. This study, therefore, deals with a discrete simulation method to get the system evaluation criteria required for designing a complex probabilistic discrete event system and to search the effective and reliable alternatives to satisfy the objective values of the given system through a on-line, single run with the short time period. Finding the alternative, we construct an algorithm which changes values of decision variables and a design alternative by using the stopping algorithm which ends the simulation in a steady state of system. To avoid the loss of data while analyzing the acquired design alternative in the steady state, we provide background for estimation of an auto-regressive model and mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data through simulation with the short time period. In numerical experiment we applied the proposed algorithm to (s, S) inventory system problem with varying Δt value. In case of the (s, S) inventory system, we obtained good design alternative when Δt value is larger than 100.

  • PDF

A Non-Uniform Convergence Tolerance Scheme for Enhancing the Branch-and-Bound Method (비균일 수렴허용오차 방법을 이용한 분지한계법 개선에 관한 연구)

  • Jung, Sang-Jin;Chen, Xi;Choi, Gyung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.361-371
    • /
    • 2012
  • In order to improve the efficiency of the branch-and-bound method for mixed-discrete nonlinear programming, a nonuniform convergence tolerance scheme is proposed for the continuous subproblem optimizations. The suggested scheme assigns the convergence tolerances for each continuous subproblem optimization according to the maximum constraint violation obtained from the first iteration of each subproblem optimization in order to reduce the total number of function evaluations needed to reach the discrete optimal solution. The proposed tolerance scheme is integrated with five branching order options. The comparative performance test results using the ten combinations of the five branching orders and two convergence tolerance schemes show that the suggested non-uniform convergence tolerance scheme is obviously superior to the uniform one. The results also show that the branching order option using the minimum clearance difference method performed best among the five branching order options. Therefore, we recommend using the "minimum clearance difference method" for branching and the "non-uniform convergence tolerance scheme" for solving discrete optimization problems.

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece (A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.377-386
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.