• Title/Summary/Keyword: Discrete Optimization

Search Result 509, Processing Time 0.024 seconds

A Study of Bending Using Long Type Coil by Discrete Method (다분할 해석법에 의한 장형코일의 곡가공 연구)

  • Lee, Young-Hwa;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters, compared with the heating by a gas torch. The existing axis symmetric analysis method could neither handle initial curved plates nor be used in the optimization of coil shapes because of its limit of an axis symmetric coil shape. But the proposed method using some discrete part models and analysis processes could overcome these difficulties and show more accurate results in temperatures and deflections of flat or curved plates with initial curvature than those in the existing axis symmetric analysis method. This method is composed of the multi-disciplinary analyses such as an electro magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach per each step. Traditionally, the coil shape in the induction heating is circular shape and it needs the moving process along heating lines. To overcome this, the 'Long Type Coil' with some linear parallel coils was proposed. It did not need the moving process along heating lines and reduced the heating process time. The results of experiments were compared with those of the simulation.

Fixed-point Optimization of a Multi-channel Digital Hearing Aid Algorithm (다중 채널 디지털 보청기 알고리즘의 고정 소수점 연산 최적화)

  • Lee, Keun Sang;Baek, Yong Hyun;Park, Young Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • In this study, multi-channel digital hearing aid algorithm for low power system is proposed. First, MDCT(Modified Discrete Cosine Transform) method converts time domain of input speech signal into frequency domain of it. Output signal from MDCT makes a group about each channel, and then each channel signal adjusts a gain using LCF(Loudness Compensation Function) table depending on hearing loss of an auditory person. Finally, compensation signal is composed by TDAC and IMDCT. Its all of process make progress 16-bit fixed-point operation. We use fast-MDCT instead of MDCT for reducing system complexity and previously computed tables instead of log computation for estimating a gain. This algorithm evaluate through computer simulation.

  • PDF

Model Predictive Control for Tram Charging and Its Semi-Physical Experimental Platform Design

  • Guo, Chujia;Zhang, Aimin;Zhang, Hang
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1771-1779
    • /
    • 2018
  • Modern trams with a super capacitor have gained a lot of attention in recent years due to its reliability, convenience, energy conservation and environmental friendliness. Because of its special charging characteristic, the traditional charging structure and control strategy cannot satisfy its charging requirements. This paper presents a new charging topology for fast charging modern trams with a super capacitor and it designs a controller using continuous control set model predictive control (CCS-MPC). There are three contributions in this paper. First, a new charging structure is designed and its mathematics model is derived. The cascade structure is adopted instead of the parallel structure to simplify the control process and to keep the rated power of the controllable part low. Second, a MPC control strategy is proposed to satisfy the charging characteristic. The optimal control signal can be obtained by solving the designed optimization problem. The optimal control signal is related to the discrete control action. In addition, mapping between the continuous control signal and the discrete control action is designed. Third, a semi-physical experimental platform is built to verify the proposed topology and control method. The simulation model and experiment platform are built to verify the correctness of the new structure and its control method. The results obtained show that the new topology can work effectively.

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.

Optimization of Pipelined Discrete Wavelet Packet Transform Based on an Efficient Transpose Form and an Advanced Functional Sharing Technique

  • Nguyen, Hung-Ngoc;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.374-385
    • /
    • 2019
  • This paper presents an optimal implementation of a Daubechies-based pipelined discrete wavelet packet transform (DWPT) processor using finite impulse response (FIR) filter banks. The feed-forward pipelined (FFP) architecture is exploited for implementation of the DWPT on the field-programmable gate array (FPGA). The proposed DWPT is based on an efficient transpose form structure, thereby reducing its computational complexity by half of the system. Moreover, the efficiency of the design is further improved by using a canonical-signed digit-based binary expression (CSDBE) and advanced functional sharing (AFS) methods. In this work, the AFS technique is proposed to optimize the convolution of FIR filter banks for DWPT decomposition, which reduces the hardware resource utilization by not requiring any embedded digital signal processing (DSP) blocks. The proposed AFS and CSDBE-based DWPT system is embedded on the Virtex-7 FPGA board for testing. The proposed design is implemented as an intellectual property (IP) logic core that can easily be integrated into DSP systems for sub-band analysis. The achieved results conclude that the proposed method is very efficient in improving hardware resource utilization while maintaining accuracy of the result of DWPT.

Development of Slope Stability Analysis Method Based on Discrete Element Method and Genetic Algorithm I. Estimation (개별요소법과 유전자 알고리즘에 근거한 사면안정해석기법의 개발 I. 검증)

  • Park Hyun-Il;Park Jun;Hwang Dae-Jin;Lee Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.115-122
    • /
    • 2005
  • In this paper, a new method composed of discrete element method and genetic algorithm has been introduced to estimate the safety factor and search critical slip surface on slope stability analysis. In case of estimating the safety factor, conventional methods of slope analysis based on the limit equilibrium do not satisfy the overall equilibrium condition; they must make assumptions regarding the inclination and location of the interstice forces. An alternative slope analysis method based on the discrete element method, which can consider the compatibility condition between force and displacement, is presented. Real-coded genetic algorithm is applied to the search for the minimum factor of safety in proposed analysis method. This search method is shown to be more robust than simple optimization routines, which are apt to find local minimum. Examples are also shown to demonstrate the applicability of the proposed method.

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Robust $H_{\infty}$ filtering for discrete-time polytopic uncertain systems (이산시간 폴리토프형 불확실성 시스템의 견실 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae;Oh, Do-Chang;Lee, Kap-Rai
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.26-33
    • /
    • 2002
  • The design method of robust $H_{\infty}$ filtering for discrete-time uncertain linear systems is investigated in this paper. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytope type. The objective is to design a stable robust $H_{\infty}$ filter guaranteeing the asymptotic stability of filtering error dynamics and present an $L_2$ induced norm bound analytically for the modified $H_{\infty}$ performance measure. The sufficient condition for the existence of robust $H_{\infty}$ filter and the filter design method are established by LMI(linear matrix inequality) approach, which can be solved efficiently by convex optimization. The proposed algorithm is checked through an example.

Automatic FE Mesh Generation Technique using Computer Aided Geometric Design for Free-form Discrete Spatial Structure (CAGD를 이용한 프리폼 이산화 공간구조물의 유한요소망 자동생성기법)

  • Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • This paper provides background theories and numerical results of automatic finite element (FE) mesh generation for freeform discrete structures. The present method adopts the computer aided geometric design (CAGD) technique to overcome the limitation of case-sensitive traditional automatic FE mesh generator. The present technique involves two steps. The first one is to represent the shape of the structure using the geometric model based on the CAGD and the second one is to generate the discrete FE mesh of spatial structures over the geometric model. From numerical results, it is found to be that the present technique is very easy to produce the FE mesh for free-form spatial structures and it can also reuse some features of traditional automatic mesh generator in the process. Furthermore, it shows the possibility to be used for the shape optimization of large spatial structures.

  • PDF

Optimized Simulation Framework for the Analysis in Battle systems (전투실험 분석을 위한 최적화 시뮬레이션 프레임워크)

  • Kang, Jong-Gu;Lee, Minkyu;Kim, Sunbum;Hwang, Kun-Chul;Lee, Donghoon
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • The tactical employment is a critical factor to win the war in the modern battlefield. To apply optimized tactics, it needs analyses related to a battle system. Normally, M&S (Modeling & Simulation) has been studied to analyze data in general problems. However, this method is not suitable for military simulations because there are many variables which make complex interaction in the system. For this reason, we suggested the optimized simulation framework based on the M&S by using DPSO (Discrete binary version of PSO) algorithm. This optimized simulation framework makes the best tactical employment to reduce the searching time compared with the normal M&S used by Monte Carlo search method. This paper shows an example to find the best combination of anti-torpedo scenario in a short searching time. From the simulation example, the optimized simulation framework presents the effectiveness.