• Title/Summary/Keyword: Discontinuous pulse width modulation

Search Result 33, Processing Time 0.019 seconds

Effect of Pulse Width Modulation Methods on Power Losses and Thermal Loadings of Single-Phase 5-Level NPC Inverters for PV Systems (전압 변조 방법에 따른 단상 5-레벨 NPC 태양광 인버터의 전력 손실 및 열 부하 분석)

  • Ryu, Taerim;Choi, Ui-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • In this paper, the effect of pulse width modulation methods on thermal loadings and power losses of single-phase five-level NPC inverters for photovoltaic systems are analyzed. The pulse width modulation methods affect the power losses of the NPC inverters and thus lead to different thermal loadings of NPC inverters. To identify the reliability-critical power device with respect to thermal stress, the thermal loadings of I- and T-type NPC inverters are analyzed by applying the unipolar pulse modulation method. Then, the effect of the discontinuous pulse width modulation method on power losses and thermal loadings of power devices of I- and T-type NPC inverters are analyzed. Finally, the operation of NPC inverters applying the discontinuous pulse modulation method is confirmed by experiments. The results show that the discontinuous pulse modulation method is able to improve the reliability of NPC inverters by reducing thermal loadings of reliability-critical power devices and it is more effective for T-type NPC inverters than I-type NPC inverters.

Reducing Switching Losses in Indirect Matrix Converter Drives: Discontinuous PWM Method

  • Bak, Yeongsu;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1325-1335
    • /
    • 2018
  • This paper presents a discontinuous pulse width modulation (DPWM) method to reduce switching losses in an indirect matrix converter (IMC) drive. The IMC has a number of power semiconductor switches. In other words, it consists of a rectifier stage and an inverter stage for AC/AC power conversion, which are composed of 12 and 6 switching devices, respectively. Therefore, the switching devices of the IMC suffer from high switching losses in the IMC drives. Various topologies to reduce switching losses have been studied by eliminating a number of switches from the rectifier stage. In this study, in contrast to prior research, a DPWM method is presented to reduce the switching losses of the inverter stage. The effectiveness of the proposed method to reduce switching losses in IMC drives is verified by simulations and experimental results.

Reduction of Common Mode Voltage in Asymmetrical Dual Inverter Configuration Using Discontinuous Modulating Signal Based PWM Technique

  • Reddy, M. Harsha Vardhan;Reddy, T. Bramhananda;Reddy, B. Ravindranath;Suryakalavathi, M.
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1524-1532
    • /
    • 2015
  • Conventional space vector pulse width modulation based asymmetrical dual inverter configuration produces high common mode voltage (CMV) variations. This CMV causes the flow of common mode current, which adversely affects the motor bearings and electromagnetic interference of nearby electronic systems. In this study, a simple and generalized carrier based pulse width modulation (PWM) technique is proposed for dual inverter configuration. This simple approach generates various continuous and discontinuous modulating signals based PWM algorithms. With the application of the discontinuous modulating signal based PWM algorithm to the asymmetrical dual inverter configuration, the CMV can be reduced with a slightly improved quality of output voltage. The performance of the continuous and discontinuous modulating signals based PWM algorithms is explored through both theoretical and experimental studies. Results show that the discontinuous modulating signal based PWM algorithm efficiently reduces the CMV and switching losses.

A New DPWM Method to Suppress the Low Frequency Oscillation of the Neutral-Point Voltage for NPC Three-Level Inverters

  • Lyu, Jianguo;Hu, Wenbin;Wu, Fuyun;Yao, Kai;Wu, Junji
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1207-1216
    • /
    • 2015
  • In order to suppress the low frequency oscillation of the neutral-point voltage for three-level inverters, this paper proposes a new discontinuous pulse width modulation (DPWM) control method. The conventional sinusoidal pulse width modulation (SPWM) control has no effect on balancing the neutral-point voltage. Based on the basic control principle of DPWM, the relationship between the reference space voltage vector and the neutral-point current is analyzed. The proposed method suppresses the low frequency oscillation of the neutral-point voltage by keeping the switches of a certain phase no switching in one carrier cycle. So the operating time of the positive and negative small vectors is equal. Comparing with the conventional SPWM control method, the proposed DPWM control method suppresses the low frequency oscillation of the neutral-point voltage, decreases the output waveform harmonics, and increases both the output waveform quality and the system efficiency. An experiment has been realized by a neutral-point clamped (NPC) three-level inverter prototype based on STM32F407-CPLD. The experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed DPWM method.

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

Loss Analysis and Comparison of Grid-connected Bidirectional Inverter with Different Types of PWM Schemes (PWM 방식에 따른 계통연계 양방향 인버터의 손실양상 비교 및 분석)

  • Heo, Sung-Jun;Ahn, Hyo-Min;Byun, Jong-Eun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.547-550
    • /
    • 2017
  • This paper presents a loss analysis and compares three pulse width modulation (PWM) methods applied in a three-phase grid-connected bidirectional inverter for an energy storage system. The losses in switching devices and output low pass filters are theoretically analyzed by using PWM control techniques. Grid-connected bidirectional inverters are designed by using PWM techniques, and the designed inverters are simulated to verify the analysis results.

Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters (전기차용 전력변환장치의 펄스 폭 변조 기법 분석)

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan;Yang, Seung-Yong;Boo, Chang-Jin;Kim, Ho-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.

Discontinuous PWM Scheme for Switching Losses Reduction in Modular Multilevel Converters

  • Jeong, Min-Gyo;Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1490-1499
    • /
    • 2017
  • The modular multilevel converter (MMC) is generally considered to be a promising topology for medium-voltage and high-voltage applications. However, in order to apply it to high-power applications, a huge number of switching devices is essential. The numerous switching devices lead to considerable switching losses, high cost and a larger heat sink for each of the switching device. In order to reduce the switching losses of a MMC, this paper analyzes the performance of the conventional discontinuous pulse-width modulation (DPWM) method and its efficiency. In addition, it proposes a modified novel DPWM method for advanced switching losses reduction. The novel DPWM scheme includes an additional rotation method for voltage-balancing and power distribution among sub modules (SMs). Simulation and experimental results verify the effectiveness and performance of the proposed modulation method in terms of its switching losses reduction capability.

DC-Link Voltage Ripple Analysis of Minimum Loss Discontinuous PWM Strategy in Two-Level Three-Phase Voltage Source Inverters (최소 손실 불연속 변조 기법에 따른 2레벨 3상 전압원 인버터의 직류단 전압 맥동 분석)

  • Lee, Junhyuk;Park, Jung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2021
  • DC-link capacitors are one of the main components in two-level three-phase voltage source inverters (VSIs); they provide the pulsating input current and stabilize the vacillating DC-link voltage. Ideally, the larger the capacitance of DC-link capacitors, the better the DC-link voltage stabilizes. However, high capacitance increases the cost and decreases the power density of VSI systems. Therefore, the capacitance should be chosen carefully on the basis of the DC-link voltage ripple requirement. However, the DC-link voltage ripple is dependent on the pulse-width modulation (PWM) strategy. This study especially presents a DC-link voltage ripple analysis when the minimum loss discontinuous PWM strategy is applied. Furthermore, an equation for the selection of the minimum capacitance of DC-link capacitors is proposed. Experimental results with R-L loads are also provided to verify the effectiveness of the presented analysis.

Torque Ripple Reduction and Switching Loss Reduction Method for Induction Motors by Hybrid PWM (전압변조기법 변경을 이용한 유도전동기의 스위칭 손실 및 토크 리플 저감 방법)

  • Lee, Sung Ho;Kim, Sol Joon;Lee, June-Seok;Lee, Chang-Moo
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.189-190
    • /
    • 2018
  • 본 논문에서는 유도전동기의 토크 리플 및 스위칭 손실 저감을 위해 전압변조기법인 공간벡터변조(Space Vector Pulse Width Modulation, SVPWM) 기법과 불연속전압변조(Discontinuous Pulse Width Modulation, DPWM) 기법을 혼합하여 사용하는 새로운 변조기법을 제안한다. 제안하는 방식은 지령전압이 최대인 부근에서 SVPWM 기법을 사용하며, 나머지 구간에서는 DPWM 기법을 적용한다. 전 구간 단일기법을 적용할 때와 비교하여 제안하는 방식은 토크 리플 및 스위칭 손실을 효율적으로 저감시킬 수 있으며 시뮬레이션을 통해 타당성을 검증한다.

  • PDF