• Title/Summary/Keyword: Discontinuous model

Search Result 299, Processing Time 0.031 seconds

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.

Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE (DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화)

  • Kwon, Jun Hwan;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Numerical Modeling of Hydrogen Embrittlement-induced Ductile Fracture Using a Gurson-Cohesive Model (GCM) and Hydrogen Diffusion (Gurson-Cohesive Model(GCM)과 수소 확산 모델을 결합한 수소 취화 파괴 해석 기법)

  • Jihyuk Park;Nam-Su Huh;Kyoungsoo Park
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.267-274
    • /
    • 2024
  • Hydrogen embrittlement fracture poses a challenge in ensuring the structural integrity of materials exposed to hydrogen-rich environments. This study advances our comprehension of hydrogen-induced fracture through an integrated numerical modeling approach. In addition, it employs a ductile fracture model named the Gurson-cohesive model (GCM) and hydrogen diffusion analysis. GCM is employed as a fracture model that combines the Gurson model to illustrate the continuum damage evolution and the cohesive zone model to describe crack surface discontinuity and softening behavior. Moreover, porosity and stress triaxiality are considered as crack initiation criteria . A hydrogen diffusion analysis is also integrated with the GCM to account for hydrogen enhanced decohesion (HEDE) mechanisms and their subsequent impacts on crack initiation and propagation. This framework considers the influence of hydrogen on the softening behavior of the traction-separation relationship on the discontinuous crack surface. Parametric studies explore the sensitivity to diffusion properties and hydrogen-induced fracture properties. By combining numerical models of hydrogen diffusion and the ductile fracture model, this study provides an understanding of hydrogen-induced fracture and thereby contributes significantly to the ongoing efforts to design materials that are resilient to hydrogen embrittlement in practical engineering applications.

The Understanding of Depression Subtypes (우울증 아형들의 이해)

  • Han, Chang-Hwan;Ryu, Seong Gon
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.20-36
    • /
    • 2001
  • The debate about whether depressive disorders should be divided into categories or arrayed along a continuum has gone for decade, without resolution. In our review, there is more evidence consistent with the spectrum concept than there is with the idea that depressive disorders constitute discrete clusters marked by relatively discontinuous boundaries. First, "depression spectrum", "is there a common genetic factors in bipolar and unipolar affective disorder", "threshold model of depression" and "bipolar spectrum disorder" are reviewed. And, a new subtype of depression is so called SeCA depression that is a stressor-precipitated, cortisol-induced, serotonin-related, anxiety/aggression-driven depression. SeCA depression is discussed. But, there is with the idea that depressive disorders constitute discrete subtypes marked by relatively discontinuous boundaries. This subtypes of depressive disorder were reviewed from a variety of theoretical frames of reference. The following issues are discussed ; Dexamethasone suppression test(DST), TRH stimulation test, MHPG, Temperament Character Inventory(TCI), and heart rate variability(HRV).

  • PDF

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

Comparative Usefulness of Naver and Google Search Information in Predictive Models for Youth Unemployment Rate in Korea (한국 청년실업률 예측 모형에서 네이버와 구글 검색 정보의 유용성 분석)

  • Jung, Jae Un
    • Journal of Digital Convergence
    • /
    • v.16 no.8
    • /
    • pp.169-179
    • /
    • 2018
  • Recently, web search query information has been applied in advanced predictive model research. Google dominates the global web search market in the Korean market; however, Naver possesses a dominant market share. Based on this characteristic, this study intends to compare the utility of the Korean web search query information of Google and Naver using predictive models. Therefore, this study develops three time-series predictive models to estimate the youth unemployment rate in Korea using the ARIMA model. Model 1 only used the youth unemployment rate in Korea, whereas Models 2 and 3 added the Korean web search query information of Naver and Google, respectively, to Model 1. Compared to the predictability of the models during the training period, Models 2 and 3 showed better fit compared with Model 1. Models 2 and 3 correlated different query information. During predictive periods 1 (continuous with the training period) and 2 (discontinuous with the training period), Model 3 showed the best performance. During predictive period 2, only Model 3 exhibited a significant prediction result. This comparative study contributes to a general understanding of the usefulness of Korean web query information using the Naver and Google search engines.

An Exploration of Creativity Education Model (창의성 교육 모델의 탐색)

  • Kang, Choong-Youl
    • Journal of Gifted/Talented Education
    • /
    • v.10 no.1
    • /
    • pp.1-32
    • /
    • 2000
  • Although it is widely acknowledged that enhancing creativity is an important educational theme on which schools should depend and embody their educational goal and activities, how to do it can be characterized as 'piecemeal' without a whole picture of it. Thus, school practices of creativity education has been disoriented, discontinuous, short-term, and peripheral in nature. In this practical context, a theoretical model of creativity education was developed in ways in which several theoretical concepts based on research findings on a variety of aspects of creativity education were compiled and organized. The core of the model was creative problem solving process to which the goals and the mediating variables of creativity education were connected in relational fashion. By giving repetitive opportunities for creative problem solving geared to producing the results that are novel and useful for the individual as well as the socity, it was conceptualized that two educational goals could be achieved: a short-term goal of developing creative potential of the individual and the long-term goals of self-actualization of the individual and contribution to the society. It is also conceptualized that creative problem solving can be influenced in positive manner by several mediating variables: content knowledge and skills, creative cognition, creative motivation and attitudes, and creative environment. The creative environment is composed of psychological and physical conditions and provides a basis for creativity education. The former three variables are conceptualized as necessary conditions for the effectiveness and efficiency of creative problem solving, when provided appropriately. The four mediating variables ware conceptualized as mutually affecting so that the development of one variable influences positively that of the other, and vice versa. In terms of practical perspective of teaching creativity, developing creative potential, self-actualization, and contribution to society are the goals; creative problem solving process is the methodology; content knowledge and skills, creative cognition, and creative motivation and attitudes are the content; and creative environment is the condition of creativity education. The model is not yet perfect but needs further explorations to make it more detailed in clarifying various relationships. For instance, how the creative problem solving process can be differentiated in teaching various subject matters is yet to be explored. Thus, the model proposed in this study should be regarded as a general model of creativity education, and is relatively sound to be adopted in school practices since it is based on the theoretical as well as empirical study findings on creativity. However, the proposed model needs to be validated through empirical researches in real teaching settings.

  • PDF

The 3-Phase Induction Motor Speed Control by the MRA-DSM controller (MRA-DSM 제어기를 이용한 3상 유도전동기의 속도 제어)

  • 원영진;한완옥;박진홍;이종규;이성백
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.1
    • /
    • pp.54-62
    • /
    • 1995
  • This paper is a study on a speed control of an induction motor used the MRA-DSM(Mode1 Reference Adaptive-Discrete Sliding Mode) controller. In this paper, when controls motor speed, DSM algorithm is proposed for having Robustness against disturbance and parameter variation. and it is also proposed MRA-DSM including the additional load model reference algorithm, which can be compensated the discontinuous control imputs at sliding mode and followed the model Preference independent of parameter variation of control subjects. The control system is composed of the parallel processing control system using the microprocessor for maximizing the performance of control systems and the real time processing. Also it simplifies the hardware composed of controlling the system by software and improves the reliability of the system. And while MRA-DSM control, faster response characteristics of 27.2 % is obtained than DSM control.

  • PDF

Stability Analysis of Rock Slope with Consideration of Freezing-Thawing Depth (동결융해 심도를 고려한 암반사면의 안정성 해석에 관한 연구)

  • Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Rock slope near the road or railroad is affected by the outside temperature and iterative freezing-thawing process during winter and early spring. The purpose of this study is to analyze the stability of rock slope which is iniluenced by deterioration due to the freezing-thawing. Method of analysis is homogenization method which find the strength property of discontinuous rock mass and as a strength failure criterion, Drucker-Prager failure criterion is used, The deterioration property of real rock is obtained by a freezing-thawing labordtory test of tuff and this quantitative property is used as a basic data of stability analysis of rock mass. To evaluate the deterioration depth due to the freezing-thawing in the field rock slope, one dimensional heat conductivity equation is used and as a a result we can find the depth of which is affected by a temperature. After determined the freezing-thawing depth of model slope, the pattern of rock mass strength value of model rock slope which excess the limit of self-load is analyzed.

  • PDF