• Title/Summary/Keyword: Discontinuous conduction mode(DCM)

Search Result 88, Processing Time 0.021 seconds

PWM-PFC Step-Up Converter For Novel Loss-Less Snubber (새로운 무손실 스너버에 의한 PWM-PFC 스텝-업 컨버터)

  • Kwak Dong-Kurl;Lee Bong-Seob;Jung Do-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, authors propose a step-up converter of pulse width modulation (PWM) and power factor correction (PFC) by using a novel loss-less snubber. The proposed converter for a discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control method is simple. In the general DCM converters, the switching devices are fumed-on with the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve a soft switching (ZCS and ZVS) of the switching turn-off, the proposed converter is constructed by using a new loss-less snubber which is operated with a partial resonant circuit. The result is that the switching loss is very low and the efficiency of converter is high. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

High Power-Factor Single-Stage Half-Bridge High Frequency Resonant Inver (고역률을 가지는 Single-Stage Half-Bridge 고주파 공진 인버터)

  • Won, Jae-Sun;Kim, Dong-Hee;Seo, Cheol-Sik;Cho, Gyu-Pan;Oh, Seung-Hoon;Jung, Do-Young;Bae, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1196-1198
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Half Load-Cycle Worked Dual SEPIC Single-Stage Inverter

  • Chen, Rong;Zhang, Jia-Sheng;Liu, Wei;Zheng, Chang-Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • The two-stage converter is widely used in traditional DC/AC inverter. It has several disadvantages such as complex topology, large volume and high loss. In order to overcome these shortcomings, a novel half load-cycle worked dual SEPIC single-stage inverter, which is based on the analysis of the relationship between input and output voltages of SEPIC converters operating in the discontinuous conduction mode (DCM), is presented in this paper. The traditional single-stage inverter has remarkable advantages in small and medium power applications, but it can’t realize boost DC/AC output directly. Besides one pre-boost DC/DC converter is needed between the DC source and the traditional single-stage inverter. A novel DC/AC inverter without pre-boost DC/DC converter, which is comprised of two SEPIC converters, is studied. The output of dual SEPIC converters is connected with anti-parallel and half load-cycle control is used to realize boost and buck DC/AC output directly and work properly, whatever the DC input voltage is higher or lower than the AC output voltage. The working principle, parameter selection and the control strategy of the inverters are analyzed in this paper. Simulation and experiment results verify the feasibility of the new inverter.

An Integrated Single Stage AC/DC Converter (고전력밀도 단일전력단 교류/직류 컨버터)

  • Phum, Sopheak;Kang, Cheolha;Kim, Eun-Soo;Lee, Young-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.88-90
    • /
    • 2012
  • A study on an integrated single stage AC/DC converter is presented in this paper. The input current can be controlled by the auxiliary winding($L_{aux}$), auxiliary primary winding($N_3$), and the boost inductor($L_B$) which are designed to operate in discontinuous conduction mode(DCM) to reduced the total harmonic distortion(THD) of input current. The auxiliary primary winding($N_3$) is critically selected in order to compress the input capacitor voltage($V_{in}$) as well as to reduce the current stress of the switch(Q). Low total harmonic distortion(THD), low input voltage($V_{in}$) in universal input voltage($V_{AC}$), low current stress at the switching device and high efficiency are the main consideration keys in this design to achieve high performance system with low cost of single stage AC/DC converter. A 30W single stage AC/DC prototype converter is under study.

  • PDF

High-Voltage Pulsed Power Modulator based on single IGBT switch with Fast-Rising Time (빠른 상승률 갖는 단일 IGBT 스위치 기반 고전압 펄스 파워 모듈레이터)

  • Liu, Chang-yu;Cho, Chan-Gi;Song, Seung-Ho;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.46-48
    • /
    • 2019
  • 본 논문은 Discontinuous Conduction Mode(DCM) 플라이백 컨버터로 생성한 고전압 펄스를 스파크 갭으로 펄스 상승 시간을 줄이는 방법에 관하여 다룬다. 이러한 방법으로 생성된 빠른 상승률 특성을 가지는 고전압 펄스 전원장치는 친환경 가스 처리 분야에 사용할 수 있다. 기존 스태킹 구조의 펄스 전원 장치는 많은 수의 스위치들과 에너지 저장 소자가 필요하므로 부피가 커지고 제조 단가가 증가하는 반면, 분 논문에 제안된 전원 장치는 구조를 단순화하여 전체 시스템의 소형화 및 제조 단가를 낮춘 점을 특징으로 한다. 제안된 설계 토폴로지는 플라이백 변압기 2차 측에 다이오드의 사용 유무에 따라 두 개의 변형된 회로로 응용 가능 하다. 변압기 2차측에 다이오드를 사용하면, 음의 성분 없이 깨끗한 고전압 출력 펄스를 만들 수 있지만 사용한 다이오드의 전압 정격을 고려해야 한다. 다이오드를 사용하지 않는다면, 고전압 출력 펄스에 음의 성분이 발생하지만 비용과 부피를 최대한 줄일 수 있다. PSIM 시뮬레이션을 사용하여 제안하는 전원 장치의 23kV, 0.5 ㎲, 10 ns rising time의 출력 펄스 발생 성능을 검증하고, 다이오드 사용에 따른 출력 펄스의 차이점을 비교하였다.

  • PDF

Characteristic Estimation of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성평가)

  • Won, Jae-Sun;Kim, Hae-Jun;Park, Jae-Wook;Nam, Seung-Sik;Seo, Cheol-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1190-1192
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that boost converter make the line current follow naturally the sinusoidal line voltage waveform. Experimental results have demonstrated the feasibility of the proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Study on Characteristic Analysis of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter (단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성해석에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Cho, Gyu-Pan;Jung, Do-Young;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.16-23
    • /
    • 2006
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high power-factor. The proposed topology is integrated half-bridge boost rectifier as power factor corrector(PFC) and half-bridge high frequency resonant converter into a single-stage. The input stage of the half-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. Simulation results have demonstrated the feasibility of the proposed high frequency resonant converter. Characteristics values based on characteristics analysis through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, fluorescent lamp and DC-DC converter etc.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.