• Title/Summary/Keyword: Discontinuous Current Mode(DCM)

Search Result 71, Processing Time 0.017 seconds

A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control (전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구)

  • Kwak Dong-Kurl;Kim Choon-Sam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.

Control of a Bridgeless PFC with the Discontinuous Conduction Mode (불연속전도모드를 갖는 브리지리스 PFC의 제어)

  • La, Jae-Du;Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.248-253
    • /
    • 2014
  • Generally, power factor correction (PFC) techniques play an important role in the power supply technology. Many new circuit topologies and control strategies for PFC have been proposed. Among them, the brideless PFC (BPFC) reduces the number of switching devices and the losses and improves the power density as well. Moreover, by implementing the improved topology in the discontinous conduction mode (DCM) it ensures almost unity power factor in a simple and effective manner. In the DCM operation gives additional advantages such as zero-current turn-on in the power switches, zero-current turn-off in the output diode and reduces the complexity of the control circuitry. In this paper, a new control strategy for the BPFC is proposed. Also, the performance of the proposed system is demonstrated through experiments.

The Modified Control Method of Boost Converter for PV System in DCM (DCM에서 PV시스템용 부스트 컨버터의 개선된 제어방식)

  • Lee, Young-Jin;Han, Dong-Hwa;Byen, Byeong-Joo;Choi, Jung-Muk;Bayasgalan, Dugarjav;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.297-304
    • /
    • 2013
  • This paper presents a improved control technique to overcome disadvantage when the inductor current of boost converter in PV system becomes DCM(Discontinuous Conduction Mode) due to the low insolation. MPPT(Maximum Power Point Tracking) output reference voltage could not be exactly followed by conventional dual-loop PI control method used typically because of the error between the actual current and measured current. Therefore, in this paper, Hybrid controller that changes the control method in DCM and CCM(Continuous Conduction Mode), and single state feedback controller are used to compensate that problem. The proposed control technique was verified by simulation using PSIM 9.0 and experiments.

Discontinuous Conduction Mode Current Control using a Current Gain Feedforward Compensation for Boost Converter (전류게인 전향보상기법을 이용한 부스트 컨버터의 불연속전도 모드 전류제어)

  • Lee, Seung-Goo;Kim, Young-Roc;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2049-2055
    • /
    • 2011
  • In this paper a new current control method is proposed for the discontinuous conduction mode of boost converter. The proposed method using a current gain feedforward compensation adjusts a measured inductor current value and then, calculated an average current precisely in the discontinuous conduction mode as well as continuous conduction mode. By applying the proposed method, the current measurement error is significantly reduced to 2% regardless of the operating points. The proposed method is analyzed and its performance is investigated in simulation. To verify the feasibility of the proposed scheme, a 10kW 3-phase interleaved boost converter was built and experimental results are matched to the simulation results.

Inductor Design Method of DCM Interleaved PFC Circuit for 6.6-kW On-board Charger

  • You, Bong-Gi;Lee, Byoung-Kuk;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2247-2255
    • /
    • 2017
  • Because the on-board charger (OBC) is installed in electric vehicles (EVs), high power density is regarded as a key technology. Among components of the OBC, inductors occupy more than 30% of the total volume. Thus, it is important to reduce the volume and the weight of inductors while maintaining thermal stability. Discontinuous conduction mode (DCM) can satisfy these requirements; however, only a few studies have adopted the DCM operation for OBCs because of the large inductor current ripple. In this paper, a design process is proposed for application of the DCM operation to OBCs. In order to analyze the inductor losses accurately, a numerical formula for the inductor current ripple is deduced based on a detailed analysis. Two inductors are fabricated using several ferrite cores and powder cores taking into consideration the inductor size, inductor losses, and temperature rise. In order to verify the analysis and design process, experimental results are presented that show that the designed inductors satisfy the requirements of the OBCs.

Analysis, Design, and Implementation of a Single-Phase Power-Factor Corrected AC-DC Zeta Converter with High Frequency Isolation

  • Singh, Bhim;Agrawal, Mahima;Dwivedi, Sanjeet
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.243-253
    • /
    • 2008
  • This paper deals with the analysis, design, and implementation of a single phase AC-DC Zeta converter with high frequency transformer isolation and power factor correction(PFC) in two modes of operation, discontinuous current mode of operation(DCM), and continuous current mode of operation(CCM). A Digital Signal Processor(DSP) based implementation is carried out for validation of the Zeta converter developed design in discontinuous mode of operation. A comparison of both modes of operation is presented for a 1kW power rating from the point of view of steady state and dynamic behavior, power quality, simplicity, control technique, device rating, and converter size. The experimental results of a developed prototype of Zeta converter are presented for validation of the developed design. It is observed that CCM is most suitable for higher power applications where it requires some complex control and sensing of the additional variables.

A Study on the Power Factor Improvement of Single-Phase Bridgeless Voltage Doubler Converter (단상 브리지리스 배전압 변환기의 역률 개선에 관한 연구)

  • Koo, Do-Yeon;Kim, Dong-Wook;Lim, Seung-Beom;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.169-170
    • /
    • 2011
  • PFC(Power Factor Correction) converters are commonly designed for CCM(Continuous Conduction Mode). However, DCM(Discontinuous Conduction Mode) appears in the input current near the ZCP(Zero Crossing Point) at light loads, resulting in input current distortion. It is caused by inaccurate average current values obtained in DCM. This paper studies a simple digital control scheme that can be operated in both CCM and DCM with minimal changes to the CCM average current control structure.

  • PDF

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

Design and Implementation of PIC/FLC plus SMC for Positive Output Elementary Super Lift Luo Converter working in Discontinuous Conduction Mode

  • Muthukaruppasamy, S.;Abudhahir, A.;Saravanan, A. Gnana;Gnanavadivel, J.;Duraipandy, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1886-1900
    • /
    • 2018
  • This paper proposes a confronting feedback control structure and controllers for positive output elementary super lift Luo converters (POESLLCs) working in discontinuous conduction mode (DCM). The POESLLC offers the merits like high voltage transfer gain, good efficiency, and minimized coil current and capacitor voltage ripples. The POESLLC working in DCM holds the value of not having right half pole zero (RHPZ) in their control to output transfer function unlike continuous conduction mode (CCM). Also the DCM bestows superlative dynamic response, eliminates the reverse recovery troubles of diode and retains the stability. The proposed control structure involves two controllers respectively to control the voltage (outer) loop and the current (inner) loop to confront the time-varying ON/OFF characteristics of variable structured systems (VSSs) like POESLLC. This study involves two different combination of feedback controllers viz. the proportional integral controller (PIC) plus sliding mode controller (SMC) and the fuzzy logic controller (FLC) plus SMC. The state space averaging modeling of POESLLC in DCM is reviewed first, then design of PIC, FLC and SMC are detailed. The performance of developed controller combinations is studied at different working states of the POESLLC system by MATLAB-Simulink implementation. Further the experimental corroboration is done through implementation of the developed controllers in PIC 16F877A processor. The prototype uses IRF250 MOSFET, IR2110 driver and UF5408 diodes. The results reassured the proficiency of designed FLC plus SMC combination over its counterpart PIC plus SMC.

A Study on Boost Converter for Power Factor Correction (역률 개선을 위한 승압형 컨버터에 대한 연구)

  • Lee, C.H.;Kim, D.U.;Lee, S.G.;Sung, N.K.;Lee, S.H.;Oh, B.H.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1052-1054
    • /
    • 2001
  • This paper describes a boost converter to be operated at the boundary of continuous current mode(CCM) and discontinuous current mode(DCM) for power factor correction and low cost. A control method to be utilized in simulation is a average-current mode method in case of operating in CCM. The simulation results show that Better is the CCM converter then the DCM converter in harmonic content and input current waveform. And A Double-boost converter is superior to single-boost converter for input-current harmonic.

  • PDF