• Title/Summary/Keyword: Discharge cell

Search Result 830, Processing Time 0.026 seconds

Laser Diagnostic in a Plasma Display Panel Discharge Cell

  • Choi, Young-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.21-22
    • /
    • 2000
  • Laser diagnostic method in a plasma display discharge cell was introduced. The information of electric field, potential and electron temperature et al. in the surface of plasma display panel can be measured using laser induced fluorescence spectroscopy. However, because of the very small discharge dimension of ${\sim}$ 100 ${\mu}m$, the measurement attempt has almost not been performed. In this paper, the direct measurement possibility of the parameters and the recent work of electric field measurement are demonstrated in the plasma display panel.

  • PDF

Discharge Properties of an AC Plasma Display Panel with Comb-Type Electrodes (Comb형 전극구조를 갖는 AC 플라즈마 디스플레이 패널의 방전특성)

  • Kim, Dong-Su;Jang, Ji-Geun;Im, Seong-Gyu;Jang, Ho-Jeong
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.195-198
    • /
    • 1999
  • The newly designed Ac-PDP(plasma display panel with comb-type electrode) structure was fabricated by using the screen printing method and the electrical and optical characteristics were measured under the various discharge conditions. The minimum firing voltages measured under pure Ne and Ne+Xe mixture gas with the application of 10 kHz square wave were 190V and 160V, respectively. The firing voltages of the PDP cell with the comb-type electrode were compared with those of the cell with matrix electrode under the same discharge condition. The firing voltage of the PDP cell with comb-type electrode was 15 V lower than that of the PDP cell with conventional matrix electrodes.

  • PDF

Controller Design of Stand-Alone Photovoltaic System with Charge-Discharge Controller for Remote lsland Power Supply

  • Kang, Ki-Hwan;Yu, Gwon-Jong;Song, Jinsoo;Jeong, Young-Seok;Kang, Ki-Hwan;Lee, Byoung-Ku;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.972-977
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. Therefore SPVS can be classified into variable types in accordance with connection method between battery and solar cell array. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell array and battery. Therefore SPVS with charge and discharge controller which can operate solar cell array at maximum power point is designed and experimented with a laboratory prototype.

  • PDF

Design of Stand-Alone Photovoltaic System with Charge-Discharge Controller (충방전 제어기를 이용한 독립형 태양광 발전시스템의 설계)

  • 김홍성;유권종;송진수;이병구;정영석;강기환;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.103-108
    • /
    • 1998
  • This paper deals with stand-alone Photovoltaic system(SPVS) with charge and discharge controller. Main power source of SPVS are generally solar cell and battery. Therefore SPVS can be classified into variable types in accordance with connection type between battery and solar cell. Mainly used one of them is direct connection type which has advantages such as simple structure and simple controller. However most big drawback of this system is energy loss by voltage disharmony between solar cell and battery. Therefore SPVS with charge and discharge controller which can operate solar cell at maximum power point is designed and analyzed by simulation in this paper.

  • PDF

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Comparison of the fluid simulation with experimental data of excited Xe species density in PDP cell

  • Yang, Sung-Soo;Ko, Sang-Woo;Kim, Hyun-Chul;Mukherjee, Sudeshna;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.739-742
    • /
    • 2003
  • We have compared 2-D and 3-D fluid simulation results of alternating current plasma display panel (AC-PDP) cell with experimentally measured two kinds of excited Xe species $Xe^{\ast}(^{3}P_{1})$ and $Xe^{\ast}(^{3}P_{2})$ characteristics. Although direct experimental access and diagnostics of the discharge in a PDP cell is problematic due to the small cell size, some of experimental technologies have made it possible to diagnose the behavior of excited Xe species [1, 2]. The simulation shows the similar characteristics to the experimental results in the excited Xe species density distribution and the number of excited Xe atoms in anode and cathode region. In certain cases, we obtained the arch-shaped discharge path between two sustain electrodes due to the additional pulse applied to address electrode analogous to experiment. This long path discharge induced higher luminous and discharge efficiency compared to the standard case.

  • PDF

Charge/Discharge Properties of Camon Added $LiFeO_4$

  • Jin, En-Mei;Li, Hu;Jeon, Yeon-Su;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.361-362
    • /
    • 2007
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD) and FE-SEM. $LiFePO_4/SPE/Li$ and $LiFePO_4$-C/SPE/Li cells were characterized electrochemically by charge/discharge experiments. The results showed that the discharge capacity of $LiFePO_4$-C/SPE/Li cell was 103 mAh/g at the first cycle. The discharge capacity of $LiFePO_4$-C/SPE/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/SPE/Li cells, 126 mAh/g at the first cycle and 123 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/SPE/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/SPE/Li cell.

  • PDF

Physical Mechanism of Light emission from Discharge Cells in the Plasma Display Panel (PDP 방전 셀에서 빛이 방출되는 물리적 메커니즘)

  • Uhm, Han-S.;Choi, Eun-H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.6
    • /
    • pp.556-562
    • /
    • 2006
  • The plasma display panel is made of many small discharge cells, which consist of a discharge space between the cathode and anode. An electrical discharge occurs in the discharge space filled by neon and xenon gases. The electron temperature is determined from the sparking criterion, which theoretically estimates the electrical breakdown voltage in terms of the xenon mole fraction. The plasma in the cell emits vacuum ultraviolet lights of 147 nm and 173 nm, exciting fluorescent material and converting VUV lights to visible lights. The physical mechanisms of all these processes have been theoretically modeled and experimentally measured. The theory and experimental data agree reasonably well. However, new materials and better configuration of cells are needed to enhance discharge and light emission efficiency and to improve the PDP performance.

Modeling of The Ni-MH Battery Source and Development of The Charger.Discharger System (Ni-MH 전지전원의 모델링과 충.방전 장치 개발)

  • 김광헌;허민호;박영수;안재영;양승학;이일기
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.433-437
    • /
    • 1998
  • Equalize SOC of the cell which effect on the charge.discharge ability and the efficiency of the battery, through the charge.discharge characteristic test of the battery source, and develope the high efficiency charge.discharge system in the series HEV have a constant engine-generator output. For this, in this paper, establish the electrical model and the condition of high efficiency charge.discharge, and proposed the improvement method of charge.discharge characteristic in the battery source that consist of twenty Ni-MH cells connected serial/parallel

  • PDF