• Title/Summary/Keyword: Discharge Properties

Search Result 1,329, Processing Time 0.033 seconds

Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method (정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상)

  • Lim, Chaehun;Kim, Kyung Hoon;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2021
  • A thermally conductive 200 ㎛ thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the ID/IG ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.

Effects of Si cluster incorporation on properties of microcrystalline silicon thin films

  • Kim, Yeonwon;Yang, Jeonghyeon;Kang, Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.181-181
    • /
    • 2016
  • Hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films have attracted much attention as materials of the bottom-cells in Si thin film tandem photovoltaics due to their low bandgap and excellent stability against light soaking. However, in PECVD, the source gas $SiH_4$ must be highly diluted by $H_2$, which eventually results in low deposition rate. Moreover, it is known that high-rate ${\mu}c-Si:H$ growth is usually accompanied by a large number of dangling-bond (DB) defects in the resulting films, which act as recombination centers for photoexcited carriers, leading to a deterioration in the device performance. During film deposition, Si nanoparticles generated in $SiH_4$ discharges can be incorporated into films, and such incorporation may have effects on film properties depending on the size, structure, and volume fraction of nanoparticles incorporated into films. Here we report experimental results on the effects of nonoparticles incorporation at the different substrate temperature studied using a multi-hollow discharge plasma CVD method in which such incorporation can be significantly suppressed in upstream region by setting the gas flow velocity high enough to drive nanoparticles toward the downstream region. All experiments were performed with the multi-hollow discharge plasma CVD reactor at RT, 100, and $250^{\circ}C$, respectively. The gas flow rate ratio of $SiH_4$ to $H_2$ was 0.997. The total gas pressure P was kept at 2 Torr. The discharge frequency and power were 60 MHz, 180 W, respectively. Crystallinity Xc of resulting films was evaluated using Raman spectra. The defect densities of the films were measured with electron spin resonance (ESR). The defect density of fims deposited in the downstream region (with nonoparticles) is higher defect density than that in the upstream region (without nanoparticles) at low substrate temperature of RT and $100^{\circ}C$. This result indicates that nanoparticle incorporation can change considerably their film properties depending on the substrate temperature.

  • PDF

Electrochemical Properties of $TiO_2$ and ZnO-Added $LiNiO_2$ ($TiO_2$와 ZnO를 첨가한 $LiNiO_2$의 전기화학적 특성)

  • Kim, Hun-Uk;Song, Myoung-Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.142-149
    • /
    • 2005
  • [ $LiNiO_2$ ] was mixed with $TiO_2$ or ZnO for the preparation of a cathode. The electrochemical properties of the cathode were investigated and the effects of the addition of $TiO_2$ or ZnO were discussed. The first discharge capacity decreased as the quantity of the added $TiO_2$ or ZnO increased. It is probably due to the decrease in the area of reaction interface according to the increase in the amount of the added oxide. When 2wt.% and 5wt.% of oxides are added, the discharge capacity increased as the number of cycles increased. It is considered that this results from the increase in the area of reaction interface because the oxide is detached from the $LiNiO_2$ with the increase in the number of cycles. The 1wt.% $TiO_2$ or ZnO-added $LiNiO_2$ had a larger first charge capacity than $LiNiO_2$. This is considered to result from the deintercalation of Li ions in the Ni sites along with the Li ions in the Li sites.

Water Quality Properties of Tributaries of Daechung Lake, Korea (대청호 유입지천의 수질 특성)

  • Shim, Moo Joon;Yoon, Jae Yong;Lee, Soo Hyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.12-25
    • /
    • 2015
  • The tributaries of Daechung Lake play an important role in controlling eutrophication in the lake, which is used for agricultural purposes and as potable water. However, water quality properties were not extensively studied in the tributaries of Daechung Lake. The objectives of this study are to investigate spatial and temporal properties of water quality and to characterize streams which could threaten water quality of Daechung Lake. For this study, water samples were weekly or monthly collected from February 2014 to October 2014 in 9 streams. Water quality parameters analyzed in this study include biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total nitrogen and phosphorus (TN and TP), suspended solids (SS), and chlorophyll a. Based on temporal distribution and principal component analysis, BOD, COD, TOC, SS, and TP were controlled by not only river discharge that increased during summer due to heavy rain fall, but also due to anthropogenic input (e.g., bridge construction and/or agricultural activity). Dilution is also one of the factors explaining TN and conductivity, both of which decreased with increased discharge. Generally, concentrations of contaminants (BOD, COD, TOC, TN and TP) in the tributaries were higher than those of Daechung Lake. However, pollution load indicated that only the main channel of Geum River and Sook Stream may largely influence lake waters, attributed mostly to their large volumes. This implies that the main channel and Sook Stream are the major influences on the water quality of Daechung Lake.

Mechanisms involved in modification of film structure and properties in ICP assisted dc and pulsed dc sputtering

  • Kusano, Eiji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.59.2-59.2
    • /
    • 2015
  • Modification of film structure and properties in inductively-coupled plasma (ICP) assisted dc and pulsed dc sputtering has been reported by Oya and Kusano [1] and by Sakamoto, Kusano, and Matsuda [2], showing drastic changes in films structure and properties by the ICP assistance in particular to the pulsed dc discharge. Although mechanisms involved in the modification has been reported to be the increase in energy transferred to the substrate, details of effects of low-energy ion bombardment on the modification and origin of an anomalous increase in the ion quantity by the ICP assistance to the pulsed dc discharge have not been discussed. In this presentation, mechanisms involved in film structure and property modification in ICP assisted dc and pulsed dc sputtering, in which a number of low-energy ions are formed, will be discussed based on ion energy distribution as well as effectiveness of energy transfer to the substrate by low energy particles [3]. The results discussed in this presentation will emphasize the fact that the energetic particles playing an important role in the film structure modification are those to be deposited, but not those of inert gas, when their energies range in less than 100 eV in the pressure range of magnetron sputtering.

  • PDF

Tensile Properties and Morphology of Carbon Fibers Stabilized by Plasma Treatment

  • Lee, Seung-Wook;Lee, Hwa-Young;Jang, Sung-Yeon;Jo, Seong-Mu;Lee, Hun-Soo;Lee, Sung-Ho
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • Commercial PAN fibers were thermally stabilized at 220 or $240^{\circ}C$ for 30 min. Those fibers were further stabilized using radio-frequency (RF) capacitive plasma discharge during 5 or 15 min. From Fourier transform infrared spectroscopy results, it was observed that an additional plasma treatment led to further stabilization of PAN fibers. After stabilization, carbonization was performed to investigate the final tensile properties of the fabricated carbon fibers (CFs). The results revealed that a combination of thermal and plasma treatment is a possible stabilization process for manufacturing CFs. Morphology of CFs was investigated using scanning electron microscopy. The morphology shows that the plasma stabilization performed by the RF large gap plasma discharge may damage the surface of the CF, so it is necessary to select a proper process condition to minimize the damage.

A Study on Using Incineration Heat of Municipal Solid Wastes - Case Study of Taegu metropolitan city - (생활(生活)쓰레기 소각열(燒却熱) 이용실태(利用實態)에 관(關)한 연구(硏究) - 대구광역시(大邱廣域市)를 중심(中心)으로 -)

  • Hong, Won-Hwa;Yi, Gang-Kook;Lee, Ji-Hee
    • KIEAE Journal
    • /
    • v.1 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • This study aims to make a fundamental data for a policy-making decision in treatment and disposal of municipal solid wastes and presents a research data on the discharge properties of municipal solid wastes and making a unit of them in the Taegu metropolitan city. The results can be summarized as follows; survey the discharge properties of municipal solid wastes, calorific values and to present a research-data in supplying incineration-heat of wastes with the area of Sung-seo in Taegu. So, using fundamental data for planning and running wastes-incineration plants as well as trying to make better Urban Environmental Infra-structure. The results are obtained from the study. 1) The proportion of combustible wastes in Taegu increased from 89.6% to 94.47% during 1993~2000. However, the proportion of incombustibles decreased from 10.4% to 5.53% during 1993~2000. 2) The value of representative properties is about 1500~2000kcal/kg. So we can expect that it should be made use of energy-resources positively. 3) The heat from Sung-seo wastes-incineration plants is used to produce electronic-energy for wastes-incineration plants in summer season. The heat from Sung-sea wastes-incineration plants is in charge of 27% which of supplying the area of Sung-seo with district heating energy in winter season.

  • PDF

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.

Anode Properties of Boron Doped Polyacene Derived from Phenolic Resin (페놀수지로부터 유도된 Boron을 Doping한 polyacene계 부극의 특성)

  • Oh, Won-Chun;Park, Seung-Huyk;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.705-711
    • /
    • 2000
  • We have studied the structural characterization, surface morphology and electrical properties for boron dopped polyacene anode material from phenolic resin for lithium secondary battery. The boron dopped anode material were characterized as boron contents of 5, 10, 15 and 20%, respectively. From the X-ray results, the all kinds of compounds were observed for the diffraction patterns for typical amorphous carbons. The SEM morphology showed formation of semi spherical granule for the boron dopped compounds. As the result of the electrical charge/discharge and impedance data, the 10 and 15% boron dopped materials showed good properties on the ions and electron transfer effect of battery.

  • PDF

Properties of Surface Electrical Conduction in Materials for Outdoor Insulator (옥외 애자용 재료의 표면 전기전도특성)

  • 박영국;강성화;정수현;이운석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.207-210
    • /
    • 1998
  • Surface electrical conduction in insulator is most important factor to assess the insulation performances of outdoor insulating materials. In this paper, contamination performance of the widely used materials for outdoor insulator - porcelain, EPDM, Silicone rubber - were discussed by measuring properties of average leakage current and scintillation discharge pulses under artificial contamination conditions. The artificial contaminations used were deionized distilled water fog, 0.5wt% NaCl salt fog of light pollution and 2wt% NaCl salt fog of medium pollution. The average leakage current was appeared linearly with applied voltage at dry and clean surface condition. The magnitude of leakage current was almost same at different kinds of samples. In case of deionized distilled water fog, the characteristics of leakage current and applied voltage was most different to that in case of dry and clean condition. In case of salt fog pollution condition. The leakage current was increased above critical voltage. The scintillation discharges were also activated at the level the leakage current and scintillation discharges were increased with increasing pollution degree. The resistance to pollution properties of silicone rubber appeared excellent among them.

  • PDF