• 제목/요약/키워드: Discharge Flow Rate

검색결과 758건 처리시간 0.024초

글로우방전 가스크로마토그라프 검출기에서 방전가스의 영향 (Effect of Discharge Gas on the Electrical Characteristics of the Glow Discharge Plasma for the Gas Chromatographic Detector)

  • 박현미;강종성;김효진
    • 약학회지
    • /
    • 제39권5호
    • /
    • pp.480-486
    • /
    • 1995
  • The change in discharge current of a glow discharge has been shown the potential sensitive detector for gas chromatography. To investigate the effect of carrier gas on the electrical characteristics of the discharge and the peak response, the discharge pressure, gas flow rate, and discharge gap have been studied. The discharge gas included the Ar, He, and N$_{2}$. The gas flow rate has been found one of the important parameters to affect both the electrical characteristics and the peak response.

  • PDF

공기유량에 따른 글로우 방전의 제전 특성 (Ionizing Characteristic of Glow Discharge by Controlled Air Flow Rate)

  • 최상원
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.49-53
    • /
    • 2008
  • Glow discharge has lots of attractive properties, such as lower discharge sustaining voltage, no generation of ozone, and so on. And more, ionizer was developed recently using an atmospheric pressure glow discharge. On the other hand, ionizer needs a compressed or blown air to transport ion for charged objects. This air is very useful in explosive hazardous area to prevent the explosion of flammable gas and/or vapor by ignition sources, e.g. electrical spark. In this paper, we investigated the ionizing characteristic of atmospheric pressure glow discharge by controlled air flow rate from 5 liters to 60 liters a minute, and compared with decay time between the corona discharge and glow discharge as a function of some direction and distance from discharge ion source. We confirmed that an air flow rate needs 25 liters a minute to sustain the most suitable atmospheric pressure glow discharge and to increase an ionizing efficiency.

정유량 밸브의 카트리지의 오리피스 구멍의 유출계수 (Discharge Coefficients of Orifice Hole in the Cartridge of Constant Flow Control Valve)

  • 유선학;강승덕;양의석;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.305-308
    • /
    • 2004
  • The constant flow control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have similar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the constant flow control valve was developed. The performance of this control valve is effected by hole area and discharge coefficients of the cartridge holes. The discharge coefficients of orifice hole in the cartridge were testes with various sizes of holes and various flow direction in the holes. The discharge coefficients decreased as the hole size increased due to the collision at the cartridge wall of water jet. The effects of the flow direction at the hole were not significant on the discharge coefficients.

  • PDF

DBD (Dielectric Barrier Discharge)를 이용한 유량 센서 개발에 관한 연구 (Development of a Flow Sensor Using DBD (Dielectric Barrier Discharge))

  • 김태훈;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2076-2081
    • /
    • 2008
  • In this study, a new concept of a flow sensor is developed using dielectric barrier discharge (DBD). Current of DBD generated between two electrodes is changed with varying flow rates. Therefore, it is possible to measure the flow rate by correlating generated DBD current with flow rates. The effects of flow rate, frequency, channel height, diameter of electrodes and distance between electrodes on the performance of the flow sensor using DBD are experimentally investigated.

  • PDF

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

원심 압축기 임펠러 출구 유동에 관한 실험적 연구 (Experimental study on impeller discharge flow of a centrifugal compressor)

  • 신유환;김광호;손병진
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF

Numerical and Experimental Studies on the Fluidic Characteristics and Performance of Liner-type Microtube

  • Kim, Jin Hyun;Woo, Man Ho;Kim, Dong Eok
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: Methods: Three-dimensional CFD modeling was conducted to analyze the flow structure and discharge flow rate corresponding to the variation in the geometry of the flow channel in a microtube. Additionally, experiments were carried out, and the discharge flow rate was measured at various inlet pressures and inclination angles of the microtube. Results: The quantitative data of velocity distribution and discharge flow rate were obtained. As the width and length of the microtip increased, the discharge flow rate decreased significantly because of the increase in the loss of pressure along the microtube. As the depth of the microtip increased, the flow rate also increased because of the reduction in the flow resistance. However, in this analysis, the variation in the angle of the microtip did not influence the flow rate. From the experimental results, it was observed that the flow rate increased linearly with the increase in the inlet pressure, and the effects of the inclination angle were not clearly observed in those test cases. The values of the flow rate obtained from the experiments were significantly lower than that obtained from the CFD analysis. This is because of the distortion of the shape of the flow path inside the microtube during the fabrication process. The distortion of the flow path might decrease the flow cross-sectional area, and it would increase the flow resistance inside the microtube. The variation in the flow rate corresponding to the variation in the inlet pressure showed similar trends. Conclusions: Therefore, the results of the numerical analysis obtained from this study can be efficiently utilized for optimizing the shape of the microtip inside a microtube.

공기 양정(air lift) 펌프를 응용한 슬러지 배출장치에 대한 연구 (Application of Air Lift Pump for Sludge Discharger)

  • 안갑환;박영식
    • 한국환경과학회지
    • /
    • 제13권10호
    • /
    • pp.929-938
    • /
    • 2004
  • Sludge discharger applied the principle of the air lift pump was investigated experimentally for the different design( diameter of discharge pipe, diameter and height of the inside and outside wall) and operating parameters(air flow rate, water level). And it was conducted that performance comparison about sludge discharger and conventional air lift pump. The result indicated that discharged liquid were increased with the increase of air flow rate and water level and decrease distance between inside and outside wall. The discharge pressure was increased with an increase of air flow rate and a decrease of the diameter of the discharge pipe, for both the sludge discharger and the airlift pump. The discharge pressures of the sludge discharger were 3-6 times higher than those of the air lift pump.

Thrust Vector Control and Discharge Stabilization in a Hall Thruster by Azimuthal Division of Propellant Flow Rate

  • Fukushima, Yasuhiro;Yokota, Shigeru;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.574-578
    • /
    • 2008
  • In order to achieve thrust vector control and discharge stabilization in Hall thrusters, the azimuthal nonuniformity of propellant flow rate in an acceleration channel was created. A plenum chamber was divided into two rooms by two walls and propellant flow rate supplied to each section was independently controlled. In a magnetic layer type Hall thruster, steering angle of up to ${\pm}2.3$ degree was achieved. In an anode layer type Hall thruster, discharge current oscillation amplitude was decreased with the normalized differential mass flow rate.

  • PDF

Characteristics of Superposed Discharge type Ozonizer by Variation of Inner Dielectric Vacuum

  • Chun, Byung-Joon;Lee, Kwang-Sik;Song, Hyun-Jig
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제3C권6호
    • /
    • pp.230-235
    • /
    • 2003
  • In this paper, a superposed discharge type ozonizer with an internal dielectric that can be made into a vacuum tube has been designed and fabricated. Ozone generation and discharge characteristics have been investigated in accordance with output voltage of power supply, flow-rate, discharge power and vacuum of inside internal dielectric. Pure oxygen was used as the supply gas of the ozonizer. Ozone concentration and ozone generation are gradually increased when discharge power is increased at the same flow-rate and they are both proportional to the vacuum level. As such, the maximum ozone concentration of 8840 ppm was obtained at vacuum 0.1 Torr and flow-rate 0.5 $\ell$/min.