• Title/Summary/Keyword: Disaster-Prevention System

Search Result 972, Processing Time 0.236 seconds

Fire Detection Performance Experiment of the Water Jet Nozzle Position Control Type Automatic Fire Extinguishing Facility for Road Tunnels (도로터널용 방수노즐 위치제어형 자동소화설비의 화재감지성능실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • This study evaluated the fire detection performance of an automatic fire extinguishing system for road tunnels, which combines flame wavelength detection technology with flame image detection technology. This fusion technique to improve the fire detection capability can reduce the damage caused by the fire suppression by locating the fire source in the fire and discharging the pressurized water only at the fire source. Experiments were conducted to determine the position of a fire source when a $70cm{\times}70cm$ target was placed at a distance of 15 m, 20 m, 25 m, 30 m, and 35 m, respectively, in a situation where there is a flame and smoke in a tunnel. The performance of the ultraviolet and triple wavelength infrared (IR3) sensors was attenuated due to the interference of thick smoke. In addition when the flame was blocked by thick smoke, the image sensor sensed the smoke and emitted a fire signal.

Analysis of Road-to-Stream Linkage Characteristics in a Mountain Catchment using the Discriminant Analysis (판별분석을 이용한 산악지역 도로-하천 연결 특성 분석)

  • Park, Sang-Hyoung;Park, Changyeol;Yoo, Chulsang
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • This study analyzed the linkage characteristics between road runoff and the nearest streams in mountain regions using a discriminant analysis. The road-to-stream linkage is an important characteristic to evaluate whether the contaminant on road surface is transported directly into the nearby channel system. This study evaluated a total of 51 drainage outlets of mountain roads near the Soyanggang Dam. The linkage between road and stream, slope and width of road, and other information necessary for the discriminant analysis have been collected by in situ investigation and by analyzing the Digital Elevation Model. Finally, as independent variables in the discriminant analysis, the contributing road representing the road characteristics (similar to the runoff from the road drainage outlet) and the distance and slope of the connecting channel between road and nearest stream were selected. Among these three, the distance was found to have the highest discriminant power, the contributing road the lowest. Using the discriminant function derived, 40 out of 51 cases (78.4%) were correctly discriminated and the remaining 11 cases (21.6%) were wrongly discriminated. Reasons of wrongly discriminated cases were mainly due to change in drainage outlet direction, excessive runoff, change in road-to-stream path, etc. This result also indicates that the road-to-stream linkage can be introduced or prohibited by exactly the same way.

Assessment of Livestock Infectious Diseases Exposure by Analyzing the Livestock Transport Vehicle's Trajectory Using Big Data (빅데이터 기반 가축관련 운송차량 이동경로 분석을 통한 가축전염병 노출수준 평가)

  • Jeong, Heehyeon;Hong, Jungyeol;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.134-143
    • /
    • 2020
  • With the worldwide spread of African swine fever, interest in livestock epidemics is growing. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted livestock-related vehicles' trajectory by utilizing the facility visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority and presented them as exposure indexes aggregating the link-time occupancy of each vehicle. As a result, a total of 274,519 livestock-related vehicle trajectories were extracted, and exposure values by link and zone were quantitatively derived. Through this study, it is expected that prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies would be provided.

Optimizing Hydrological Quantitative Precipitation Forecast (HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 최적화 방안)

  • Lee, Han-Su;Jee, Yongkeun;Lee, Young-Mi;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1053-1065
    • /
    • 2021
  • In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.

Preliminary Evaluation of the Optimal Injection Rate and Injection Efficiency of Groundwater Artificial Recharge Site Using Numerical Model (수치모델을 활용한 지하수 인공함양 대상지의 적정 주입량 및 주입효율 예비 평가)

  • Cha, Jang-Hwan;Kim, Gyoo-Bum;Lee, Jae Young
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.19-30
    • /
    • 2021
  • This study evaluated the injection rate and the injection efficiency of the artificial recharge in the upper drought-prone watershed region, where the remaining water was used for injection, by using a numerical model to secure water during a drought. As a result of a numerical model under the condition of diverse injection rates per a well and hydraulic characteristics of the aquifer, the optimal injection rate per a well was estimated as 50.0 ㎥/day, and the injection efficiency was simulated as 33.2% to 81.2% of the total injection volume. As the injection time was shorter, the injection efficiency tented to increase non-linearly. As the injection rate increased, the residual storage in aquifer increased and available groundwater amount also increased, which could be advantageous for drought relief. For a more accurate assessment of injection efficiency, the model will be validated using the field injection data and optimum scenarios will enable the efficient operation of the artificial recharge system in the study area.

Effect of Hydrophobic Condition and Water Content on the Spectral Information of Soil Particle Surface (흙 입자 표면의 소수성 조건과 함수비가 분광정보에 미치는 영향)

  • Jeong-Jun, Park;Seung-Kyong, You;Kwang-Wu, Lee;Jung-Mann, Yun;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.93-100
    • /
    • 2022
  • This study describes the evaluation results on the effect of soil particle surfaces coated with various hydrophobic conditions on spectral information according to water content. Wettability test and spectral information evaluation test were performed on the hydrophobic coated standard sand. When the standard sand was coated with 1%, 3%, and 5% hydrophobic, the contact angles of sand-water interface were 130°~143°, 129°~144°, and 131°~144°, respectively. This means that the contact angle increased as the degree of hydrophobic coating increased at the same drying time, but the range of the contact angle had the same wettability. This means that the contact angle increases as the hydrophobic coating degree increases at the same drying time, whereas the contact angle range has the same wettability. As a result of spectral information evaluation, the maximum spectral reflectance of the dried sand with hydrophobic condition decreased compared to that of the hydrophilic sand, as the degree of hydrophobic increased. However, the maximum spectral reflectance was increased by increasing the degree of hydrophobic under the same water content conditions.

Factors and Satisfaction in Selecting University and Departments of One University freshmen

  • Kim, Tae-Sun;Hong, Sun-Yeun;Hur, Hwa-La;Park, Gang-woo;Park, Jin-Sik;Lee, Chang-Soo;Ha, Jong-Uk;Shin, Hwa-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.203-212
    • /
    • 2022
  • In this paper, we propose to identify the factors and satisfaction of the selection of University and departments of One university freshmen. Research subjects were 499 freshmen in 2021 at K University located in G city. The data were analyzed by descriptive statistics, t-test, ANOVA, Scheffe' test and pearson's correlation coefficient using SPSS WIN 18.0. The results of this study showed that the internet/SNS was the highest in university information media, the school teacher was the highest in information provider, and the employment rate had the most impact on university registration decision. The University satisfaction score was 3.43, and there was a significant difference in gender(t=5.527, p=.019) and admission type(F=5.527, p<.001). The department satisfaction was 3.86 and there was a significant difference in the admissions type(F=3.004, p=.018). Univdrsity satisfaction and Department satisfaction showed a significant positive correlation(r=5.527, p<.001). Universities should improve their competitiveness through systematic admission information system.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.

Analyzing the flood control capacity with flood disaster prevention system in agricultural reservoirs under climate change (농업용 저수지 홍수 방재체계 적용에 따른 기후변화 대응 홍수조절능력 변화 분석)

  • Jihye Kwak;Hyunji Lee;Jihye Kim;Seokhyeon Kim;Sinae Kim;Moon Seong Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.296-296
    • /
    • 2023
  • 최근 기후변화로 인해 극한 강우의 발생빈도가 증가하고 있다. 극한 강우의 증가는 수리구조물의 설계홍수량을 초과하는 유입량을 발생시킴으로써 수리구조물의 구조적 안정성을 저해할 수 있다. 농업용 저수지가 기후변화로 인한 이상 강우의 증가에도 불구하고 안정적으로 운영되기 위해서는 적절한 홍수 방재체계의 수립이 필요하다. 저수지의 홍수 방재체계는 구조적 홍수 방재체계와 비구조적 홍수 방재체계로 구분되며, 구조적 홍수 방재체계는 비구조적 홍수 방재체계에 비해 많은 자본이 투입되어야 한다는 특징이 있다. 농업용 저수지의 홍수 방재체계 수립 시 구조적 방법과 비구조적 방법을 종합적으로 고려하여야 하며, 농업용 저수지에 관한 홍수 방재체계 마련 방안이 정립되어야 한다. 본 연구에서는 구조적 방법과 비구조적 방법을 모두 고려한 농업용 저수지의 홍수 방재체계를 마련하고, 이를 적용함으로써 기후변화에 대응하여 농업용 저수지의 홍수조절 능력이 적절히 마련되었는지를 확인하고자 한다. 본 연구에서는 수계, 저수량, 치수 사업 진행 여부 등의 요소를 고려하여 17개의 농업용 저수지를 연구대상지로 선정하였다. 저수지 운영 모의를 위하여 각 연구대상지의 기상자료, 지형자료, 저수지 제원 자료를 수집 및 분석하였다. 저수지 운영방법으로는 저수위가 목표수위 이상일 경우 유입량 전량을 방류하는 Auto-ROM 방식을 채택하였다. 기후변화가 농업용 저수지의 홍수조절능력에 미치는 영향을 파악하기 위해 SSP (Shared Socio-economic Pathways) 기후변화 시나리오를 활용하였다.

  • PDF