• Title/Summary/Keyword: Disaster vulnerability index

Search Result 42, Processing Time 0.023 seconds

Development and Application of a Coastal Disaster Resilience Measurement Model for Climate Change Adaptation: Focusing on Coastal Erosion Cases (기후변화 적응을 위한 연안 재해 회복탄력성 측정 모형의 개발 및 적용: 연안침식 사례를 중심으로)

  • Seung Won Kang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.713-723
    • /
    • 2023
  • Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.

Simulation of Evacuation Route Scenarios Through Multicriteria Analysis for Rescue Activities

  • Castillo Osorio, Ever Enrique;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.303-313
    • /
    • 2019
  • After a disaster happens in urban areas, many people need support for a quick evacuation. This work aims to develop a method for the calculation of the most feasible evacuation route inside buildings. In the methodology we simplify the geometry of the structural and non structural elements from the BIM (Building Information Modeling) to store them in a spatial database which follows standards to support vector data. Then, we apply the multicriteria analysis with the allocation of prioritization values and weight factors validated through the AHP (Analytic Hierarchy Process), in order to obtain the Importance Index S(n) of the elements. The criteria consider security conditions and distribution of the building's facilities. The S(n) is included as additional heuristic data for the calculation of the evacuation route through an algorithm developed as a variant of the $A^*$ pathfinding, The experimental results in the simulation of evacuation scenarios for vulnerable people in healthy physical conditions and for the elderly group, shown that the conditions about the wide of routes, restricted areas, vulnerable elements, floor roughness and location of facilities in the building applied in the multicriteria analysis has a high influence on the processing of the developed variant of $A^*$ algorithm. The criteria modify the evacuation route, because they considers as the most feasible route, the safest instead of the shortest, for the simulation of evacuation scenarios for people in healthy physical conditions. Likewise, they consider the route with the location of facilities for the movement of the elderly like the most feasible in the simulation of evacuation route for the transit of the elderly group. These results are important for the assessment of the decision makers to select between the shortest or safest route like the feasible for search and rescue activities.