• Title/Summary/Keyword: Disaster Prevention Design

Search Result 443, Processing Time 0.034 seconds

A Study on the Prevention of Lightning Accidents According to Climate Change Response (기후변화에 따른 낙뢰사고 예방을 위한 제도 방안 연구)

  • Ju, Suk-won;Kim, Seong-Bin;Rie, Dong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.48-55
    • /
    • 2020
  • The installation of lightning protection system has recently been increasing, but the amount of damage has still been increasing. In this study, survey (interview) and field conditions were conducted to identify the installation and safety standards of the lightning protection system. it was analyzed that the safety management system is non-existent at the stage of the design, manufacturing and construction of the site lightning protection system, and that the safety inspection of the lightning protection facility is not properly managed. It has been shown that lightning protection systems, that can solve these problems, need to be re-established according to the reality so that safety inspection can be carried out in accordance with safety standards such as management of safety certification products, operation of survey institutions, design, manufacturing, and construction of safety standards at a national level.

Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation (교각세굴심 산정 공식의 통계적 특성)

  • Lee, Ho Jin;Chang, Hyung Joon;Heo, Tae Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • In recent years, the occurrence of localized torrential rain has increased due to the increase in heavy rainfall and massive typhoons caused by abnormal weather. As a result, the flow rate of small and medium-sized rivers in Korea is rapidly increasing, affecting the safety of bridges and increasing the risk of scour. However, the domestic bridge construction technology does not reflect the watershed characteristics of domestic rivers because the bridge scour depth calculation formula developed overseas is used to calculate the bridge scour depth. Therefore, this study is a basic study for prevention of bridge damage according to scouring phenomenon, and a comparative analysis was performed between the experimental data measured through hydraulic model test and the scour depth formulas applied in Korea. In addition, the statistical analysis between experimental data and scour depth formula shows that Coleman's (1971) formula estimates the best scour depth. The results of this study are expected to be used to calculate more accurate bridge scour depth in river design and bridge design.

A Study on the Earthquake Safety Assessment of Energy Storage Facilities According to Climate Change (기후변화에 따른 에너지 저장시설 지진 안전성평가에 관한 연구)

  • Ham, Eun-Gu;Lee, Sung-Il
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.226-235
    • /
    • 2021
  • Purpose: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Method: The risk assessment for earthquakes was conducted in accordance with the current design standard (KBC2016) for the Coalescer facility, which is a major facility of energy storage facilities. Result: In this study, by statically loading earthquake loads and evaluating the level of collapse prevention of special-class structures, facility managers can easily recognize and evaluate the risk level, and this analysis result can be applied to future facility risk management. Earthquake analysis was performed so that. Conclusion: As a result of analyzing the Coalescer facility according to the current design standard KBC2016, the stress ratio of the main supporting members was found to be up to 4.7%. Therefore, the members supporting Coalescer were interpreted as being safe against earthquakes with a reproducibility period of 2400 years that may occur in Korea.

The Safety Design of Corrosive Chemical Handling Process based on Reliability Database (신뢰도 데이터베이스 기반 부식성 화학물질 취급공정의 안전설계)

  • Chu, Chang Yeop;Baek, Jong Bae
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.141-149
    • /
    • 2018
  • In a PCB factory, there is a corrosive chemical substance supply system that can causes major leakage accidents. These accidents can give rise to shut down the factory and do residents damage that cause enormous loss of properties. To mitigate these risks, it is necessary to provide a chemical disaster prevention system. Moreover, after considering the situation and environment of the production site, it is of great importance to build an optimal chemical accident prevention system by reflecting risk reduction measures from the point of process design and by assessing quantitative risk based on reliability data. However, because there was no established database of the reliability about facilities and equipment that can be used in the domestic, the business site and consulting organization had being used the reliability data such as USA CCPS(Center for Chemical Process Safety). In these days, Korean institutes are studying on reliability data utilization method of quantitative risk assessment for preventing chemical accidents and domestic utilization algorithms and storage bed of reliability data. This study presents samples of reliability database about the chemical substance supply system that constructed from the history data such as failure, maintenance for 10 years at a PCB factory. Also, this work proposes the safety design criteria for supply facilities of corrosive chemical substance by assessing quantitative risk on the basis of the reliability data.

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

Watershed-based PMF and Sediment-runoff Estimation Using Distributed Hydrological Model (분포형 수문모형을 이용한 유역기반의 PMF 및 유사-유출량 산정)

  • Yu, Wansik;Lee, Giha;Kim, Youngkyu;Jung, Kwansue
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.1-11
    • /
    • 2018
  • Probable Maximum Flood (PMF) is mostly applied for the designs of large-scale hydraulic structures and it is estimated by computing the runoff hydrograph where Probable Maximum Precipitation (PMP) is inserted as design rainfall. The existing PMP is estimated by transferring the heavy rainfall from all watersheds of korea to the design watershed, however, in this study, PMP was analyzed by selecting only rainfall events occurred in the design watershed. And then, Catchment-scale Soil Erosion Model (CSEM) was used to estimate the PMF and sediment-runoff yield according to the watershed-based estimated PMP. Although the PMF estimated in this study was lower than the existing estimated PMF in the Yongdam-dam basin, it was estimated to be higher than the 200-year frequency design flood discharge. In addition, sediment-runoff yield was estimated with a 0.05 cm of the maximum erosion and a 0.06 cm of the maximum deposition, and a total sediment-runoff yield of 168,391 tons according to 24-hour PMP duration.

Design feasibility of double-skinned composite tubular wind turbine tower

  • Han, Taek Hee;Park, Young Hyun;Won, Deokhee;Lee, Joo-Ha
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.727-753
    • /
    • 2015
  • A double-skinned composite tubular (DSCT) wind power tower was suggested and automatic section design software was developed. The developed software adopted the nonlinear material model and the nonlinear column model. If the outer diameter, material properties and design capacities of a DSCT wind power tower are given, the developed software performs axial force-bending moment interaction analyses for hundreds of sections of the tower and suggests ten optimized cross-sectional designs. In this study, 80 sections of DSCT wind power towers were designed for 3.6 MW and 5.0 MW turbines. Moreover, the performances of the 80 designed sections were analyzed with and without considerations of large displacement effect. In designing and analyzing them, the material nonlinearity and the confining effect of concrete were considered. The comparison of the analysis results showed the moment capacity loss of the wind power tower by the mass of the turbine is significant and the large displacement effect should be considered for the safe design of the wind power tower.

Field Investigation for Identification of Contamination Sources in Petroleum-Contaminated Site (유류로 오염된 부지의 원인자 판단을 위한 현장조사 평가)

  • Park, Jeong Jun;Kim, Sung Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.141-153
    • /
    • 2018
  • Purpose : The subject site selected in this study was a place that was prepared through the reclamation of foreshore completed in 1973. Since then, the site has been occupied by the industry of ship repair for over 30 years. Method : The results of a precise soil examination conducted in 2013 showed that the site was seriously contaminated with TPH over an area of $10,000m^2$ and GL(-)3.0m in depth, with an expanding coverage of contamination. Results : The soil contamination by refined petroleum products often results in adverse effects to human health and ecological systems, thus the contamination should be purified as soon as possible. Conclusion : Hydrogeological investigation can be employed to assess the groundwater movement and propagation of contamination to determine the potential agents or contaminants in the soil contaminated with high concentration TPH.

A Study On Effectiveness of Prevent Smoke Backflow in Apartment (계단식 공동주택 방연풍속 실효성에 대한 연구)

  • Lee, Kwang­Soo;Yoon, Myong­O;Lee, Jun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Purpose: The purpose of this study is to analyze the differential pressure and velocity to prevent smoke backflow of Stairways Apartment House fire, and verified the effectiveness of smoke velocity standards proposed by NFSC 501A. Method: The smoke control design of the stairways apartment house of the real model and the performance of the velocity to prevent smoke backflow according to the window opening conditions of the living room were analyzed using the CONTAM program. Result: Although the differential pressure performance of the apartment's smoke control system was satisfactory, it was found that Performance of velocity to prevent smoke backflow did not come out according to the opening condition of the living room window. Conclusion: In the case of Stairways Apartment House, it is necessary to review the method of making exceptions to the 'velocity to prevent smoke backflow' standard required by the National Fire Safety Codes(NFSC 501A)