• Title/Summary/Keyword: Disaster Monitoring

Search Result 666, Processing Time 0.022 seconds

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Slope Failure Prediction through the Analysis of Surface Ground Deformation on Field Model Experiment (현장모형실험 기반 표층거동분석을 통한 사면붕괴 예측)

  • Park, Sung-Yong;Min, Yeon-Sik;Kang, Min-seo;Jung, Hee-Don;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, one of the natural disasters, landslide is causing huge damage to people and properties. In order to minimize the damage caused by continuous landslide, a scientific management system is needed for technologies related to measurement and monitoring system. This study aims to establish a management system for landslide damage by prediction of slope failure. Ground behavior was predicted by surface ground deformation in case of slope failure, and the change in ground displacement was observed as slope surface. As a result, during the slope failure, the ground deformation has the collapse section, the after collapse precursor section, the acceleration section and the burst acceleration section. In all cases, increase in displacement with time was observed as a slope failure, and it is very important event of measurement and maintenance of risky slope. In the future, it can be used as basic data of slope management standard through continuous research. And it can contribute to reduction of landslide damage and activation of measurement industry.

Relationship Analysis on the Monitoring Period and Parameter Estimation Error of the Coastal Wave Climate Data (연안 파랑 관측기간과 모수추정 오차 관계분석)

  • Cho, Hongyeon;Jeong, Weon-Mu;Jun, Ki Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the quantitative analysis and pattern analysis of the error bounds with respect to recording period were carried out using the wave climate data from coastal areas. Arbitrary recording periods were randomly sampled from one month to six years using the bootstrap method. Based on the analysis, for recording periods less than one year, it was found that the error bounds decreased rapidly as the recording period increased. Meanwhile, the error bounds were found to decrease more slowly for recording periods longer than one year. Assuming the absolute estimate error to be around 10% (${\pm}0.1m$) for an one meter significant wave height condition, the minimum recording period for reaching the estimate error for Sokcho and Geoje-Hongdo stations satisfied this condition with over two years of data, while Anmado station was found to satisfy this condition when using observational data of over three years. The confidence intervals of the significant wave height clearly show an increasing pattern when the percentile value of the wave height increases. Whereas, the confidence intervals of the mean wave period are nearly constant, at around 0.5 seconds except for the tail regions, i.e., 2.5- and 97.5-percentile values. The error bounds for 97.5-percentile values of the wave height necessary for harbor tranquility analysis were found to be 0.75 m, 0.5 m, and 1.2 m in Sokcho, Geoje-Hongdo, and Anmado, respectively.

Ground Subsidence Caused by the Development of Underground Karstic Networks in Limestone Terrain, Taebag City Korea (석회암 분포지에서 터널시공에 따른 지표침하 원인 분석)

  • Lee, Byung-Joo;Park, SungWook;Kim, Dea-Hong;Song, Young-Karb
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • The aim of this study is the safety and an accident prevention in limestone terrain by the underground tunneling. The geology of the study area consists of a Paleozoic sedimentary sequence dominated by limestone, sandstone, shale, and carbonaceous shale. The sequence gently dips to the northeast but the joint contains steep with variable trend. A significant fracture zone is developed in the limestone and shale beds, sub-parallel to bedding, and follows in part the limestone-sandstone contact. Monitoring of groundwater levels in the area shows marked fluctuations in the water table, which repeatedly rose to a level of -4 m before sinking to -15 m. These cycles occurred in mid-May, 2007 and in early and middle June. The data indicate that these fluctuations were unrelated to rainfall that occurred during the study period. We infer that the fluctuations were associated with the development of underground karstic networks along the deep fracture zone, and overlying ground subsidence is likely related to the rapid sinking of groundwater and the associated strong downward suction force.

Analysis of Ground Subsidence using ALOS PALSAR (2006~2010) in Taebaek, Kangwon (ALOS PALSAR(2006년~2010년) 위성영상을 이용한 강원도 태백시 지반침하 관측 및 분석)

  • Cho, Min-Ji;Kim, Sang-Wan
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • We performed DInSAR (Differential Interferometric SAR) and SBAS (Small BAseline Subset) analysis using spaceborne SAR (Synthetic Aperture Radar) in order to detect a surface subsidence in Taebaek area, Kangwon, which are suitable to the monitoring of broad and inaccessible areas. During the period from October 2006 to June 2010, we acquired twenty-three ALOS PALSAR data sets (path/frame=425/730) for this study. The ninety-six differential interferograms with a perpendicular baseline less than 1100 m were constructed by ROI_PAC, then the mean velocity map of surface displacement was derived from SBAS analysis. As a result, it was confirmed that the ground displacement occurred about 4 cm/yr at Seokgong-Jangseong and Kyungdong mines and 2 cm/yr at Saehan-Eoryong-Jungdong and Hwangji mines in Taebaek area, Kangwon. It seems that the subsidence in study area is closely related to mining activities because the most of subsiding areas are well matched with mining areas. The subsidence at Kyungdong mine shows continuous and fast velocity in about $2{\times}2$ km area. Therefore the further analysis and the effort to prevent disaster are required in this area.

3D GIS Network Modeling of Indoor Building Space Using CAD Plans (CAD 도면을 이용한 건축물 내부 공간의 3차원 GIS 네트워크 모델링)

  • Kang Jung A;Yom Jee-Hong;Lee Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Three dimensional urban models are being increasingly applied for various purposes such as city planning, telecommunication cell planning, traffic analysis, environmental monitoring and disaster management. In recent years, technologies from CAD and GIS are being merged to find optimal solutions in three dimensional modeling of urban buildings. These solutions include modeling of the interior building space as well as its exterior shape visualization. Research and development effort in this area has been performed by scientists and engineers from Computer Graphics, CAD and GIS. Computer Graphics and CAD focussed on precise and efficient visualization, where as GIS emphasized on topology and spatial analysis. Complementary research effort is required for an effective model to serve both visualization and spatial analysis purposes. This study presents an efficient way of using the CAD plans included in the building register documents to reconstruct the internal space of buildings. Topological information was built in the geospatial database and merged with the geometric information of CAD plans. as well as other attributal data from the building register. The GIS network modeling method introduced in this study is expected to enable an effective 3 dimensional spatial analysis of building interior which is developing with increasing complexity and size.

Design Flood Estimation for Pyeongchang River Basin Using Fuzzy Regression Method (Fuzzy 회귀분석기법을 이용한 평창강 유역의 설계홍수량 산정)

  • Yi, Jaeeung;Kim, Seungjoo;Lee, Taegeun;Ji, Jungwon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.1023-1034
    • /
    • 2012
  • Linear regression technique has been used widely in water resources field as well as various fields such as economics and statistics, and so on. Using fuzzy regression technique, it is possible to quantify uncertainty and reflect them to the regression model. In this study, fuzzy regression model is developed to compute design floods in any place in Pyeongchang River basin. In ungaged basins, it is usually difficult to obtain data required for flood discharge analysis. In this study, basin characteristics elements are analyzed spatially using GIS and the technique of estimating design flood in ungaged mountainous basin is studied based on the result. Fuzzy regression technique is applied to Pyeongchang River basin which has mountainous basin characteristics and well collected rainfall and runoff data through IHP test basin project. Fuzzy design flood estimation equations are developed using the basin characteristics elements for Pyeongchang River basin. The suitability of developed fuzzy equations are examined by comparing the results with design floods computed in 9 locations along the river. Using regional regression method and fuzzy regression analysis, the uncertainties of the design floods occurred from the data monitoring can be quantified.

Utilization Evaluation of Digital Surface Model by UAV for Reconnaissance Survey of Construction Project (건설공사 현황측량을 위한 UAV DSM의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.155-160
    • /
    • 2018
  • The unmanned aerial vehicle (UAV) is used in various fields, such as land surveying, facility management, and disaster monitoring and restoration because it has low operational costs, fast data acquisition, and can generate a digital surface model (DSM). Recently, the UAV has been applied to process management in construction projects. Construction projects are widely distributed not only in urban areas but also in mountainous areas and rural areas where people are rarely in traffic or in vehicles. Projects range from a few hundred meters to several kilometers long. In order to perform a reconnaissance survey, a surveying method using a global positioning system (GPS) or a total station has mainly been used. However, these methods have a disadvantage in that a lot of time is required for data acquisition. This study's purpose is to evaluate the usability of a UAV DSM for surveying a construction area. Data was acquired using the UAV and a three-dimensional (3D) laser scanner, and the DSM of the construction site was created through data processing. The UAV DSM showed accuracy to within 30 cm based on the 3D laser scanner data, and a process comparison between the two work methods was able to present the usability of the UAV DSM in the field of construction surveying. Future utilization of the UAV DSM is expected to greatly improve the efficiency of work in construction projects.

A Study on the Contents for Operation of Tunnel Management Systems Using a View Synthesis Technology (영상정합 기술을 활용한 터널관리시스템의 운영 효율성 제고를 위한 콘텐츠 연구)

  • Roh, Chang-gyun;Park, Bum-Jin;Kim, Jisoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.507-515
    • /
    • 2016
  • In South Korea, there are a large number of tunnels because of the mountainous terrain, and to overcome this characteristics, lengths of tunnels are more longer than existing tunnels. The need to improvement current tunnel management contents is giving rise for accidents in tunnel section is continuously increased although lots of efforts to reduce the accidents. Conventionally, disaster prevention have been focused on the Tunnel Management Systems, tunnel operators generally tend to depend on CCTV images for most contents of detailed traffic flow managing. In this paper, investigation about current Tunnel Management Systems contents using IPA survey was conducted, and Priority Improvement Contents(Accident Situation Management Support, 2nd Accident Management Support, Traffic Flow Monitoring), which importance are high, but satisfaction are low, are deducted. Also, CCTV images, lack intuitive understanding, are judged as a main cause of low satisfaction of those contents. To overcome those limitations of the existing Tunnel Management Systems, this study sought to develop a technology for the synthesis of road images to derive traffic information from synthesis images, and the contents improvement stragegy is established. Tunnel operators-oriented satisfaction survey on new contents was carried out, and scored 4.2 on a 5-point scale. This has confirmed that the availability of new contents and at this stage, with pushing ahead of long-tunnels and undersea tunnels construction, politic applications are expected.

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.