• Title/Summary/Keyword: Disaster Control

Search Result 1,048, Processing Time 0.025 seconds

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Multi-strategy structural damage detection based on included angle of vectors and sparse regularization

  • Liu, Huanlin;Yu, Ling;Luo, Ziwei;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • Recently, many structural damage detection (SDD) methods have been proposed to monitor the safety of structures. As an important modal parameter, mode shape has been widely used in SDD, and the difference of vectors was adopted based on sensitivity analysis and mode shapes in the existing studies. However, amplitudes of mode shapes in different measured points are relative values. Therefore, the difference of mode shapes will be influenced by their amplitudes, and the SDD results may be inaccurate. Focus on this deficiency, a multi-strategy SDD method is proposed based on the included angle of vectors and sparse regularization in this study. Firstly, inspired by modal assurance criterion (MAC), a relationship between mode shapes and changes in damage coefficients is established based on the included angle of vectors. Then, frequencies are introduced for multi-strategy SDD by a weighted coefficient. Meanwhile, sparse regularization is applied to improve the ill-posedness of the SDD problem. As a result, a novel convex optimization problem is proposed for effective SDD. To evaluate the effectiveness of the proposed method, numerical simulations in a planar truss and experimental studies in a six-story aluminum alloy frame in laboratory are conducted. The identified results indicate that the proposed method can effectively reduce the influence of noises, and it has good ability in locating structural damages and quantifying damage degrees.

Investigation of Frost Reduction Effect using Mesh Net (그물망을 이용한 서리 저감 효과 구명)

  • Yu, Seok cheol;Kim, Yu yong;Lim, Seong yoon;Song, Ho sung
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.448-455
    • /
    • 2020
  • This study was carried out to investigate reduction of the frost damage using the mesh net used for the purpose of non-bagged cultivation. A device measuring the weight of frost was developed and installed in both the control and the experimental, and the effect of frost reduction was evaluated with their weights. As a result, weight of frost in the control was reduced from 37% to 59% with mesh net on the day the frost was observed. In addition, the device for automatically observing the amount of frost was developed and the height of the windbreak of the frost measuring device was determined to be 30 cm through wind tunnel experiment. The results of this study are expected to reduce frost damage during the flowering season of fruit trees by installing mesh net and it is expected to be used as basic data for agricultural use of mesh net.

New approaches to testing and evaluating the impact capability of coal seam with hard roof and/or floor in coal mines

  • Tan, Y.L.;Liu, X.S.;Shen, B.;Ning, J.G.;Gu, Q.H.
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.367-376
    • /
    • 2018
  • Samples composed of coal and rock show different mechanical properties of the pure coal or rock mass. For the same coal seam with different surrounding rocks, the frequency and intensity of rock burst can be significantly different in. First, a method of measuring the strain variation of coal in the coal-rock combined sample was proposed. Second, laboratory tests have been conducted to investigate the influences of rock lithologies, combined forms and coal-rock height ratios on the deformation and failure characteristics of the coal section using this method. Third, a new bursting liability index named combined coal-rock impact energy speed index (CRIES) was proposed. This index considers not only the time effect of energy, but also the influence of surrounding rocks. At last, a new approach considering the influences of roof and/or floor was proposed to evaluate the impact capability of coal seam. Results show that the strength and elastic modulus of coal section increase significantly with the coal-rock height ratio decreasing. In addition, the values of bursting liability indexes of the same coal seam vary greatly when using the new approach. This study not only provides a new approach to measuring the strain of the coal section in coal-rock combined sample, but also improves the evaluation system for evaluating the impact capability of coal.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.

Stability analysis of roof-filling body system in gob-side entry retained

  • Jinlin Xin;Zizheng Zhang;Weijian Yu;Min Deng
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2024
  • The roof-filling body system stability plays a key role in gob-side entry retained (GER). Taking the GER of the 1103 belt transportation roadway in Heilong Coal Mine as engineering background, stability analysis of roof-filling body system was conducted based on the cusp catastrophe theory. Theoretical results showed that the current design parameters of 1103 belt transportation roadway could ensure the roof-filling body system stable during the resistance-increasing support stage of the filling body and the stable support stage of the filling body. Moreover, a verified global numerical model in FLAC3D was established to analyze the failure characteristics including surrounding rock deformation, stress distribution, and plastic zone. Numerical simulation indicated that the width-height ratio of the filling body had a great influence on the stability of the roof-filling body system. When the width-height ratio was greater than 0.62, with the decrease of the width-height ratio, the peak stress of the filling body gradually decreased; when the width-height ratio was greater than 0.92, as the distance to the roadway increased, the roof stress increased and then decreased. The theoretical analysis and numerical simulation findings in this study provide a new research method to analyze the stability of the roof-filling body system in GER.

Mid to Long Term R&D Direction of UAV for Disaster & Public Safety (재난치안용 무인기 중장기 연구개발 방향)

  • Kim, Joune Ho
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.83-90
    • /
    • 2020
  • Disasters are causing significant damage to the lives and property of our society and are recognized as social problems that need to be solved nationally and globally. The 4th industrial revolution technologies affecting society as a whole such as the Internet of Things(IoT), Artificial Intelligence(AI), Drones(Unmanned Aerial Vehicles), and Big Data are continuously absorbed into the disaster and safety industries as scientific and technological tools for solving social problems. Very soon, twenty-nine domestic UAV-related organizations/companies will complete the construction of a multicopter type small UAV integrated system ('17~'20) that can be operated at disaster and security sites. The current work considers and proposes the mid-to-long term R&D direction of disaster UAV as a strategic asset of the national disaster response system. First, the trends of disaster and safety industry and policy are analyzed. Subsequently, the development status and future plans of small UAV, securing shortage technology, and strengthening competitiveness are analyzed. Finally, step-by-step R&D direction of disaster UAV in terms of development strategy, specialized mission, platform, communication, and control and operation is proposed.

A Study on the Analysis of the National Disaster and Safety Management Statistics and Establishment of an Integrated System for Disaster Management Standardization in Korea (재단관리표준을 위한 국가재난 및 안전관리 국가통계분석 및 통합시스템 구축방안 연구)

  • Park, Dugkeun;Oh, Jeongrim
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.2
    • /
    • pp.55-61
    • /
    • 2009
  • The statistics of disaster and safety control which have been produced by NEMA(National Emergency Management Agency) and other related agencies have some problems which show redundancies and the lack of connections. These problems can result in disbelief of disaster-management related policies and cause uncertainties on standardization. One of the main problems is caused by the lack of an integrated system that can coordinate available statistical resources. The objectives of this paper are to propose possible ways for the rearrangement of statistics categories, the improvement of statistics indicators and the integration of statistics of disaster and safety management based on the improvement of related laws and regulations. Through the integrated system for an efficient production of disaster and safety-related statistics, it will be possible to establish more accredited disaster-management policies based on the scientific statistics and international standard.

  • PDF

A Study on the Utilization Plan of Lexical Resources for Disaster and Safety Information Management Based on Current Status Analysis (재난안전정보 관리를 위한 어휘자원 현황분석 및 활용방안)

  • Jeong, Him-Chan;Kim, Tae-Young;Kim, Yong;Oh, Hyo-Jung
    • Journal of the Korean Society for information Management
    • /
    • v.34 no.2
    • /
    • pp.137-158
    • /
    • 2017
  • Disaster has a direct influence on the lives of the people, the body, and the property. For effective and rapid disaster responses, coordination process based on sharing and utilizing disaster information is the essential requirement Disaster and safety control agencies produce and manage heterogeneous information. They also develop and use word dictionaries individually. This is a major obstacle to retrieve and access disaster and safety information in terms of practitioners. To solve this problem, standardization of lexical resources related disaster and safety is essentially required. In this paper, we conducted current status analysis about lexical resources in disaster and safety domain. Consequently, we identified the characteristics according to lexical groups. And then we proposed the utilization plan of lexical resources for disaster and safety information management.

A Study of the Disaster Sign Data Analysis Technologies Based on Ontology (온톨로지 기반 재난 전조 정보 분석 기술 연구)

  • Lee, Changyeol;Kim, Taehwan
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.220-228
    • /
    • 2011
  • Disaster sign data is confirmed data by the experts to the collected data from web and users. In this paper, we focused to make the risk scores to the data based on ontology technology. To analyse the data, first of all, we defined the ontological structure for 4 kinds of disaster types which consists of the bridges, workplaces, buildings, and walls. Base on the ontologies, collected the accidents examples, and then extract the risk rules from the examples. The rules are adjusted with frequencies and weights, and managed to the ontology DB. The rules apply to the disaster sign data, and then calculates the risk scores. It plays role of the index to the risk rates. The disaster sign data management system was implemented and the rules were verified to the system. Because the quality of the risk scores to the disaster sign data depends on the data of the accidents examples's qualities, we assure that the system's performance will be monotonic increasing following up the data upgrades. Continuously, data management is needed. Also the quality control of the rules are needed.