• Title/Summary/Keyword: Disassembly Work

Search Result 25, Processing Time 0.019 seconds

The Balancing of Disassembly Line of Automobile Engine Using Genetic Algorithm (GA) in Fuzzy Environment

  • Seidi, Masoud;Saghari, Saeed
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.364-373
    • /
    • 2016
  • Disassembly is one of the important activities in treating with the product at the End of Life time (EOL). Disassembly is defined as a systematic technique in dividing the products into its constituent elements, segments, sub-assemblies, and other groups. We concern with a Fuzzy Disassembly Line Balancing Problem (FDLBP) with multiple objectives in this article that it needs to allocation of disassembly tasks to the ordered group of disassembly Work Stations. Tasks-processing times are fuzzy numbers with triangular membership functions. Four objectives are acquired that include: (1) Minimization of number of disassembly work stations; (2) Minimization of sum of idle time periods from all work stations by ensuring from similar idle time at any work-station; (3) Maximization of preference in removal the hazardous parts at the shortest possible time; and (4) Maximization of preference in removal the high-demand parts before low-demand parts. This suggested model was initially solved by GAMS software and then using Genetic Algorithm (GA) in MATLAB software. This model has been utilized to balance automotive engine disassembly line in fuzzy environment. The fuzzy results derived from two software programs have been compared by ranking technique using mean and fuzzy dispersion with each other. The result of this comparison shows that genetic algorithm and solving it by MATLAB may be assumed as an efficient solution and effective algorithm to solve FDLBP in terms of quality of solution and determination of optimal sequence.

Design of a Method for Disassembly Works on Recycle Products

  • Matsumoto, Toshiyuki;Yahata, Yuko;Shida, Keisuke
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.66-71
    • /
    • 2009
  • This study proposes a new framework for designing disassembly methods. In recent years, environmental problems have become global issues. Recycling of used products or resources is recognized as a matter of significance since it may help reduce the risk of exhausting natural resources. Considering possible exhaustion of limited natural resources in the near future, reuse of products would gain more environmental significance. As yet, it relies hugely on manual disassembly, which labor cost places burden on the total recycling cost. The purpose of this study is to propose a methodology designing for manual disassembly works, and a creation method of a jig. By focusing on parts' connection and attachment relationship, parts are categorized in 5 categories (parent part, joint key part, attaching key part, child part, and independent part) according to the features that parts possess, and 3 kinds of connection relationships (parent part-joint key part connection, parent part-independent part connection and child part-child part connection) are clarified. Connection relationship and attachment relationship charts have also been created, and utilizing them, disassembly orders are settled, and a disassembly jig is devised. The proposed methodology is also applied to a real product and its work time is improved 42% form 31 to 13 seconds.

Devising a Training Method for Assembly Work by Employing Disassembly

  • Ichikizaki, Osamu;Kubota, Ryou;Komori, Toshikazu;Matsumoto, Toshiyuki;Erikawa, Akihiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.368-379
    • /
    • 2013
  • Efficiency in work training is a perennial issue due to high-diversity low-volume production, particularly for manufacturers producing office machines which are manually assembled by workers. To reduce the training cost, parts used in training are usually reused; a trainer disassembles a product assembled by a worker in training. This paper proposes a training method that employs disassembly usually performed by a trainer. This method assigns both assembly and disassembly to a worker in training, in contrast to the conventional method. The effectiveness of the proposed method is experimentally discussed in terms of learning assembly motions and work procedure at each learning stage, namely, "undergoing learning," "immediately after learning," and "seven days after learning." The effectiveness of the training method is confirmed. The method improves the stability of work procedure recollection immediately after training. Furthermore, at seven days after training, it improves retention of the assembly motions and work procedure, and also promotes and maintains memory related to product structure.

A PROMETHEE Method Based Heuristic for Disassembly Line Balancing Problem

  • Avikal, Shwetank;Mishra, P.K.;Jain, Rajeev;Yadav, H.C.
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.254-263
    • /
    • 2013
  • Disassembly of discarded products takes place in the process of remanufacturing, recycling, and disposal. The disassembly lines have been taken as available choice for automated disassembly; therefore, it has become essential that it be designed and balanced to work efficiently. The multi-objective disassembly line balancing problem seeks to find a disassembly sequence which provides a feasible disassembly sequence, minimizes the number of workstations and idle time, and balances the line for the disassembly of post consumed product by considering the environment effects. This paper proposes a multi-criteria decision making technique based heuristic for assigning the disassembly tasks to the workstations. In the proposed heuristic, the PROMETHEE method is used for prioritizing the tasks to be assigned. The tasks are assigned to the disassembly workstations according to their priority rank and precedence relations. The proposed heuristic is illustrated with an example, and the results show that substantial improvement in the performance is achieved compared with other heuristics.

Design Principle for Disassemblability of Products (제품의 분리용이성을 위한 설계원칙)

  • Mok, Hak-Soo;Han, Chang-Hyo;Jeon, Chang-Su;Song, Min-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.48-57
    • /
    • 2008
  • This paper shows the procedure to decide an optimal design principle for improving the disassemblability with considering of disassembly conditions. On the bssis of the disassembly mechanism of products and the structure of parts and subassembly, the disassemblability is classified into four categories: graspability, accessibility, transmission of disassembly power and handling. The weighting values of the influential factors are calculated by the method of AHP(Analytic Hierarchy Process). The disassemblability is evaluated quantitatively. We established some score tables for the evaluation. Using these score tables, several principles for higher disassemblability in accordance with work conditions can be decided. An optimal design principle can be found by the comparison with the total scores of some disassembly conditions.

Neutral-point Voltage Balancing Strategy for Three-level Converter based on Disassembly of Zero Level

  • Wang, Chenchen;Li, Zhitong;Xin, Hongliang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.79-88
    • /
    • 2019
  • The neutral-point (NP) voltage of three-phase three-level NP-clamped converters is needed for balance. To maintain NP potential and suppress ripple, a novel NP voltage balancing strategy is proposed in this work. The mechanism of NP voltage variation is studied first. Then, the relationship between the disassembly of zero level (O level) and NP current is studied comprehensively. On these bases, two methods for selecting one of three output phases for the disassembly of its O level are presented. Finally, simulation and experimental results verify the validity and practicability of the proposed algorithms.

Electronic Document Automation System Model for Improving Productivity in maintenance work - in Inspection Process of Construction Equipment Maintenance - (정비작업의 생산성 향상을 위한 전자문서자동화시스템 모형 - 건설장비 정비작업을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.49-58
    • /
    • 2017
  • This paper suggests a specific model that could efficiently improve the interaction and the interface between MES(Manufacturing Execution System) server and POP(Point of Production) terminal through electronic document server and electronic pen, bluetooth receiver and form paper in disassembly and process inspection works. The proposed model shows that the new method by electronic document automation system can more efficiently perform to reduce processing time for maintenance work, compared with the current approach by handwritten processing system. It is noted in case of the method by electronic document automation system that the effects of proposed model are as follows; (a) While the processing time per equipment for maintenance by the current method was 300 minutes, the processing time by the new method was 50 minutes. (b) While the processing error ratio by the current method was 20%, the error ratio by the new method was 1%.

The Complexity Evaluation System of Automobile Subassembly for Recycling (자원 재활용을 위한 자동차 조립군의 복잡도 평가시스템)

  • Mok, Hak-Soo;Moon, Kwang-Sup;Kim, Sung-Ho;Moon, Dae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.132-144
    • /
    • 1999
  • In this study, the complexity of the product was evaluated quantitatively considering the product structure, assembly process and disassembly process. To evaluate the complexity of the product, subassemblies of automobile were analyzed and then characteristics of part and subassembly were determined according to product structure, assembly process and disassembly process. Evaluation criteria of complexity were determined considering each characteristics of part and subassembly. Experiential evaluation was accomplished by classified evaluation criteria and time-motion evaluation was accomplished by the relational motion factor with characteristics of part and subassembly in MTM(Methods Time Measurement) and WF(Work Factor). The total complexity of product was determined by experiential evaluation and time-motion evaluation.

  • PDF

Automatic Work Time Evaluation Based on a Verification of Disassemblability and Assembly Configuration (분해도 및 조립형상 정보를 이용한 작업시간 산정에 관한 연구)

  • Shin, Chul Kyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.3
    • /
    • pp.355-363
    • /
    • 2007
  • This paper presents a method of an automatic work time evaluation based on the verification of a disassemblability and assembly configuration. Even though a work time evaluation is an important field of concern for planning assembly lay-out, there are some limitations using cumbersome user query or approximated work time data without considering assembly condition. To overcome such restriction, this paper presents a method to mathematically verify assembly conditions based on the disassemblability, which is defined by the separability and stability cost. The separability cost represents a facility of the part disassembly operation, and the stability cost which represents a degree of the stability for the base assembly motion. Based upon the results, we propose a new approach of evaluating work time using neural networks. The proposed method provides an effective means of solving the work time evaluation problem and gives a design guidance of planning assembly lay-out in flexible manufacturing application. Example study is given to illustrate the concepts and procedure of the proposed schemes.

Line Balanced Assembly Sequence Generation Based on a Verification of Disassemblability and Work Time (분해도 및 작업시간 산정을 통한 균형잡힌 조립공정계획에 관한 연구)

  • Shin, Chul-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.39-48
    • /
    • 2007
  • This paper presents a method of a line balanced assembly sequence generation based on the verification of a disassemblability and a work time. To derive the disassemblability for a part to be disassembled, first we inference collision free assembly directions by extracting separable directions fur the part. And we determine the disassemblability defined by the separability and stability cost. The separability cost represents a facility of the part disassembly operation, and the stability cost which represents a degree of the stability for the base assembly motion. Based upon the results, we propose a new approach of evaluating work time using neural networks. The proposed assembly sequence generation provides an effective means of solving the line balancing problem and gives a design guidance of planning assembly lay-out in flexible manufacturing application. Example study is given to illustrate the concepts and procedure of the proposed schemes.