• Title/Summary/Keyword: Dirichlet-series

Search Result 52, Processing Time 0.037 seconds

THE ASYMPTOTIC BEHAVIOUR OF THE AVERAGING VALUE OF SOME DIRICHLET SERIES USING POISSON DISTRIBUTION

  • Jo, Sihun
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.67-75
    • /
    • 2019
  • We investigate the averaging value of a random sampling of a Dirichlet series with some condition using Poisson distribution. Our result is the following: Let $L(s)={\sum}^{\infty}_{n=1}{\frac{a_n}{n^s}}$ be a Dirichlet series that converges absolutely for Re(s) > 1. If $X_t$ is an increasing random sampling with Poisson distribution and there exists a number $0<{\alpha}<{\frac{1}{2}}$ such that ${\sum}_{n{\leq}u}a_n{\ll}u^{\alpha}$, then we have $${\mathbb{E}}L(1/2+iX_t)=O(t^{\alpha}{\sqrt{{\log}t}})$$, for all sufficiently large t in ${\mathbb{R}}$. As a result, we get the behaviour of $L({\frac{1}{2}}+it)$ such that L is a Dirichlet L-function or a modular L-function, when t is sampled by the Poisson distribution.

SOME CURIOSITIES OF THE ALGEBRA OF BOUNDED DIRICHLET SERIES

  • Mortini, Raymond;Sasane, Amol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.153-161
    • /
    • 2016
  • It is shown that the algebra $\mathfrak{H}^{\infty}$ of bounded Dirichlet series is not a coherent ring, and has infinite Bass stable rank. As corollaries of the latter result, it is derived that $\mathfrak{H}^{\infty}$ has infinite topological stable rank and infinite Krull dimension.

DISCRETE MEASURES WITH DENSE JUMPS INDUCED BY STURMIAN DIRICHLET SERIES

  • KWON, DOYONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1797-1803
    • /
    • 2015
  • Let ($S_{\alpha}(n))_{n{\geq}1}$ be the lexicographically greatest Sturmian word of slope ${\alpha}$ > 0. For a fixed ${\sigma}$ > 1, we consider Dirichlet series of the form ${\nu}_{\sigma}({\alpha})$ := ${\Sigma}_{n=1}^{\infty}s_{\alpha}(n)n^{-{\sigma}}$. This paper studies the singular properties of the real function ${\nu}_{\sigma}$, and the Lebesgue-Stieltjes measure whose distribution is given by ${\nu}_{\sigma}$.

THE GROWTH OF ENTIRE FUNCTION IN THE FORM OF VECTOR VALUED DIRICHLET SERIES IN TERMS OF (p, q)-TH RELATIVE RITT ORDER AND (p, q)-TH RELATIVE RITT TYPE

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.93-117
    • /
    • 2019
  • In this paper we wish to study some growth properties of entire functions represented by a vector valued Dirichlet series on the basis of (p, q)-th relative Ritt order, (p, q)-th relative Ritt type and (p, q)-th relative Ritt weak type where p and q are integers such that $p{\geq}0$ and $q{\geq}0$.

SOME RESULTS ON (p, q)-TH RELATIVE RITT ORDER AND (p, q)-TH RELATIVE RITT TYPE OF ENTIRE FUNCTIONS REPRESENTED BY VECTOR VALUED DIRICHLET SERIES

  • Biswas, Tanmay
    • The Pure and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.297-336
    • /
    • 2018
  • In this paper we wish to establish some basic properties of entire functions represented by a vector valued Dirichlet series on the basis of (p, q)-th relative Ritt order, (p, q)-th relative Ritt type and (p, q)-th relative Ritt weak type where p and q are integers such that $p{\geq}0$ and $q{\geq}0$.

ON CHOWLA'S HYPOTHESIS IMPLYING THAT L(s, χ) > 0 FOR s > 0 FOR REAL CHARACTERS χ

  • Stephane R., Louboutin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.1-22
    • /
    • 2023
  • Let L(s, χ) be the Dirichlet L-series associated with an f-periodic complex function χ. Let P(X) ∈ ℂ[X]. We give an expression for ∑fn=1 χ(n)P(n) as a linear combination of the L(-n, χ)'s for 0 ≤ n < deg P(X). We deduce some consequences pertaining to the Chowla hypothesis implying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date no extended numerical computation on this hypothesis is available. In fact by a result of R. C. Baker and H. L. Montgomery we know that it does not hold for almost all fundamental discriminants. Our present numerical computation shows that surprisingly it holds true for at least 65% of the real, even and primitive Dirichlet characters of conductors less than 106. We also show that a generalized Chowla hypothesis holds true for at least 72% of the real, even and primitive Dirichlet characters of conductors less than 106. Since checking this generalized Chowla's hypothesis is easy to program and relies only on exact computation with rational integers, we do think that it should be part of any numerical computation verifying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date, this verification for real, even and primitive Dirichlet characters has been done only for conductors less than 2·105.

ON q-ANALGUE OF THE TWISTED L-FUNCTIONS AND q-TWISTED BERNOULLI NUMBERS

  • Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.963-975
    • /
    • 2003
  • The aim of this work is to construct twisted q-L-series which interpolate twisted q-generalized Bernoulli numbers. By using generating function of q-Bernoulli numbers, twisted q-Bernoulli numbers and polynomials are defined. Some properties of this polynomials and numbers are described. The numbers $L_{q}(1-n,\;X,\;{\xi})$ is also given explicitly.

THE FRACTIONAL TOTIENT FUNCTION AND STURMIAN DIRICHLET SERIES

  • Kwon, DoYong
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.297-305
    • /
    • 2017
  • Let ${\alpha}$ > 0 be a real number and $(s_{\alpha}(n))_{n{\geq}1}$ be the lexicographically greatest Sturmian word of slope ${\alpha}$. We investigate Dirichlet series of the form ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-s}$. To do this, a generalization of Euler's totient function is required. For a real ${\alpha}$ > 0 and a positive integer n, an arithmetic function ${\varphi}{\alpha}(n)$ is defined to be the number of positive integers m for which gcd(m, n) = 1 and 0 < m/n < ${\alpha}$. Under a condition Re(s) > 1, this paper establishes an identity ${\sum}^{\infty}_{n=1}s_{\alpha}(n)n^{-S}=1+{\sum}^{\infty}_{n=1}{\varphi}_{\alpha}(n)({\zeta}(s)-{\zeta}(s,1+n^{-1}))n^{-s}$.