• Title/Summary/Keyword: Dirichlet boundary conditions positivity preserving flow

Search Result 1, Processing Time 0.013 seconds

A SIMPLE CHARACTERIZATION OF POSITIVITY PRESERVING SEMI-LINEAR PARABOLIC SYSTEMS

  • Haraux, Alain
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1817-1828
    • /
    • 2017
  • We give a simple and direct proof of the characterization of positivity preserving semi-flows for ordinary differential systems. The same method provides an abstract result on a class of evolution systems containing reaction-diffusion systems in a bounded domain of ${\mathbb{R}}^n$ with either Neumann or Dirichlet homogeneous boundary conditions. The conditions are exactly the same with or without diffusion. A similar approach gives the optimal result for invariant rectangles in the case of Neumann conditions.