• Title/Summary/Keyword: Directional eccentricity

Search Result 17, Processing Time 0.022 seconds

Directional Water Spray Characteristics of Sprinkler Heads (스프링클러 헤드의 방향성 살수 특성 비교 연구)

  • Park Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.35-41
    • /
    • 2004
  • The water spray characteristics of the sprinkler heads is a very important factor affecting the fire suppression performance, and it is largely dependent on the shape of the head nozzle. This study investigated shape factors and spray distribution performances for the sprinkler heads of four domestic companies with big market shares. The experimental results revealed that all flow constants exceeded the required regulation limits, however showed big differences between head types although they have the same design limit. They were however relatively consistent regardless of the pressure increases. The spray distribution of some head samples showed severe directional eccentricity, which suggests more study for the improvement.

Comparing Directional Parameters of Very Fast Halo CMEs (코로나질량방출의 방향지시 매개인수 비교)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2008
  • We examine geoeffective directional parameters of coronal mass ejections (CMEs). We select 30 front-side halo CMEs from SOHO LASCO CMEs whose speed is larger than 1000km/s and longitude is less than ${\pm}30^{\circ}$. These are thought to be the most plausible candidate of geoeffective CMEs. We examine the relation between CMEs directional parameters (Earthward direction, eccentricity, ${\Delta}$ distance and central angle parameter) and the minimum value of the Dst index. We have found that the Earthward direction parameter has a good correlation with the Dst index, the eccentricity parameter has a much better correlation with the Dst index. The bo distance and central angle parameter has a poor correlation with the Dst index. It's, however, well correlated with the Dst index in very strong geomagnetic storms. Most of CMEs causing very strong storms (Dst ${\leq}$-200nT) are found to have large Earthward direction parameter $({\geq}0.6)$, small eccentricity, bo distance and central angle parameters $(E{\leq}0.4,\;{\Delta}X\;and\;sin\;{\theta}{\leq}0.2)$. These directional parameters are very important parameters that control the geoeffectiveness of very fast front-side halo CMEs.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers (수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입)

  • Lee, An Sung;Jang, Sun-Yong
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Development of Cutting Force Model for Face Milling Operation Using 3-Directional Specific Cutting Force Coefficients (3축방향의 비절삭 계수를 이용한 정면 밀링 절삭력 모델 개발)

  • Kim, Hee-Sool;Lee, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.1
    • /
    • pp.116-129
    • /
    • 1991
  • A cutting force model for face milling operation using 3-directional specific cutting force coefficients is developed. The model is taken into consideration factors such as cutter geometry, machining conditions, spindle eccentricity, insert initial postion errors, etc. The simulated force in X, Y, Z directions from the model are subsequently compared with measured forces in the time and frequency domains. The simulated forces have a good agreement with measured forces.

  • PDF

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

A Study on the Ultimate Strength of Tube-Gusset Connection Considering Eccentricity (편심이 고려된 강관-가셋트 접합부의 극한 내력)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.201-210
    • /
    • 2001
  • A numerical analysis and experimental study were performed to investigate the behavior and strength of tube-gusset connection subjected to axial and lateral forces. To investigate the behavior of the connections, experiment was conducted by applying three directional loads. Local buckling and local plastic bending deformation of the connection were observed from the test. Analytical results were compared with test results for the limited cases. Primary interests here are the effect of eccentricity on the strength of the connection. To suggest a formula for the strength of tube-gusset connection, lateral forces were replaced with equivalent wall moment and eccenrtric vertical component force of lateral force. Ultimate strength formula for the each force was proposed. Finally, nondimensionalized ultimate strength interaction relationships between the wall moment of tube($M_w$), vertical axial force($P_v$), and eccentric vertical component of lateral force($P_e$) were formulated through parametric study.

  • PDF

A Study on the Relationship between the Eccentricity and the Level of Damage in the Seismic Response of Buildings with Plan Irregularities (지진 하중을 받는 평면 비정형 건물의 편심과 손상도의 상관관계에 대한 연구)

  • Jeong, Seoung-Hoon;Lee, Kwang-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • Most previous research on the seismic response of structures with plan irregularities have focused on the relationship between the eccentricity and the amount of torsion. This approach cannot provide the direct relationship between the irregularity and the damage. Therefore, an investigation on the relationship between the eccentricities of buildings with plan irregularities and the damage index was performed. Inelastic dynamic time-history analyses were performed on one-story buildings with various eccentricities. For the damage assessment, a 3D damage index was adopted to reflect the effect of the bi-directional response and torsion. Based on the analysis results, buildings with eccentricities of 10%, 20% and 30% will suffer 3~5%, 13~18%, and 33~47% more damage than their regular counterparts, respectively.

Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building

  • Desu, Nagendra Babu;Dutta, Anjan;Deb, S.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.459-477
    • /
    • 2007
  • A bi-directional tuned mass damper (BTMD) in which a mass connected by two translational springs and two viscous dampers in two orthogonal directions has been introduced to control coupled lateral and torsional vibrations of asymmetric building. An efficient control strategy has been presented in this context to control displacements as well as acceleration responses of asymmetric buildings having asymmetry in both plan and elevation. The building is idealized as a simplified 3D model with two translational and a rotational degrees of freedom for each floor. The principles of rigid body transformation have been incorporated to account for eccentricity between center of mass and center of rigidity. The effective and robust design of BTMD for controlling the vibrations in structures has been presented. The redundancy of optimum design has been checked. Non dominated sorting genetic algorithm (NSGA) has been used for tuning optimum stages and locations of BTMDs and its parameters for control of vibration of seismically excited buildings. The optimal locations have been observed to be reasonably compact and practically implementable.

Seismic collapse propagation in 6-story RC regular and irregular buildings

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Karimiyan, Morteza;Kashan, Ali Husseinzadeh
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.753-779
    • /
    • 2013
  • One of the most important issues in progressive collapse mechanism of the buildings is evaluation of the collapse distribution in presence of the earthquake loads. Here, collapse propagation is investigated by tracking down the location and type of the collapsed beam and column elements, from the first element to the entire buildings. 6-story reinforced concrete ordinary moment resisting frame buildings with one directional mass eccentricity of 0%, 5%, 15% and 25% are studied to investigate differences among the progressive collapse mechanism of the regular and irregular buildings. According to the results of the nonlinear time history analyses, there are some patterns to predict progressive collapse scenarios in beam and column elements of the similar regular and irregular buildings. Results also show that collapse distribution patterns are approximately independent of the earthquake records.