• Title/Summary/Keyword: Directional data

Search Result 672, Processing Time 0.028 seconds

Prediction of Student's Interest on Sports for Classification using Bi-Directional Long Short Term Memory Model

  • Ahamed, A. Basheer;Surputheen, M. Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.246-256
    • /
    • 2022
  • Recently, parents and teachers consider physical education as a minor subject for students in elementary and secondary schools. Physical education performance has become increasingly significant as parents and schools pay more attention to physical schooling. The sports mining with distribution analysis model considers different factors, including the games, comments, conversations, and connection made on numerous sports interests. Using different machine learning/deep learning approach, children's athletic and academic interests can be tracked over the course of their academic lives. There have been a number of studies that have focused on predicting the success of students in higher education. Sports interest prediction research at the secondary level is uncommon, but the secondary level is often used as a benchmark to describe students' educational development at higher levels. An Automated Student Interest Prediction on Sports Mining using DL Based Bi-directional Long Short-Term Memory model (BiLSTM) is presented in this article. Pre-processing of data, interest classification, and parameter tweaking are all the essential operations of the proposed model. Initially, data augmentation is used to expand the dataset's size. Secondly, a BiLSTM model is used to predict and classify user interests. Adagrad optimizer is employed for hyperparameter optimization. In order to test the model's performance, a dataset is used and the results are analysed using precision, recall, accuracy and F-measure. The proposed model achieved 95% accuracy on 400th instances, where the existing techniques achieved 93.20% accuracy for the same. The proposed model achieved 95% of accuracy and precision for 60%-40% data, where the existing models achieved 93% for accuracy and precision.

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

A study of stability at the head of a breakwater with directional waves (방향성 파랑의 입사에 따른 이안제 제두부의 안정성에 관한 기초적 연구)

  • 김홍진;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.144-149
    • /
    • 2001
  • The failure at the head section of rubble-mound detached breakwaters is more important than other failure modes. because this initial failures will occur the failure of the trunk section and lead to the instability of the structure. The three-dimensional failure modes are discussed using the experimental data with multi-directional waves considering the failure modes occurring around the head of the rubble-mound detached breakwater. The spacial characteristics of failure mode around the rubble-mound structures can be summarized as follows: 1) It was clarified that the failure modes at the round head of a detached breakwater are classified as failure by plunging breaker on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached breakwater. 2) The failure mode was found in the lower wave height than the design wave by the breaker depth effects. It is clarified that the structure monitored was safely designed for the design wave but the failure was occurred by the reason of breaker waves and scouring processes at the toe 3) It was observed that scouring at the toe developed in the region where steady stream due to vorticity was generated and the spatial variation of scour at the toe of the round head was predominated by incident wave direction.

  • PDF

The navigation method of mobile robot using a omni-directional position detection system (전방향 위치검출 시스템을 이용한 이동로봇의 주행방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Comparing with fixed-type Robots, Mobile Robots have the advantage of extending their workspaces. But this advantage need some sensors to detect mobile robot's position and find their goal point. This article describe the navigation teaching method of mobile robot using omni-directional position detection system. This system offers the brief position data to a processor with simple devices. In other words, when user points a goal point, this system revise the error by comparing its heading angle and position with the goal. For these processes, this system use a conic mirror and a single camera. As a result, this system reduce the image processing time to search the target for mobile robot navigation ordered by user.

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Analysis of hurricane directionality effects using event-based simulation

  • Huang, Zhigang;Rosowsky, David V.
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.177-191
    • /
    • 2000
  • This paper presents an approach for evaluating directionality effects for both wind speeds and wind loads in hurricane-prone regions. The focus of this study is on directional wind loads on low-rise structures. Using event-based simulation, hurricane directionality effects are determined for an open-terrain condition at various locations in the southeastern United States. The wind speed (or wind load) directionality factor, defined as the ratio of the N-year mean recurrence interval (MRI) wind speed (or wind load) in each direction to the non-directional N-year MRI wind speed (or wind load), is less than one but increases toward unity with increasing MRI. Thus, the degree of conservatism that results from neglecting directionality effects decreases with increasing MRI. It may be desirable to account for local exposure effects (siting effects such as shielding, orientation, etc.) in design. To account for these effects in a directionality adjustment, the factor described above for open terrain would need to be transformed to other terrains/exposures. A "local" directionality factor, therefore, must effectively combine these two adjustments (event directionality and siting or local exposure directionality). By also considering the direction-specific aerodynamic coefficient, a direction-dependent wind load can be evaluated. While the data necessary to make predictions of directional wind loads may not routinely be available in the case of low-rise structures, the concept is discussed and illustrated in this paper.

Compensation Scheme for Output Voltage Distortion in Fuel Cell Stack with Internal Humidifier (내부 가습형 연료전지 스택의 출력전압 왜곡 보상기법)

  • Koo, Keun-Wan;Woo, Dong-Gyun;Joo, Dong-Myoung;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In this paper, the characteristics of portable fuel cell system are introduced and the dynamic response of output voltage of fuel cell stack with internal humidifier is analyzed. When the output of the fuel cell (FC) stack is short-circuited for humidification, the output voltage of the FC stack rapidly drops. In order to maintain the load voltage in the required range, dynamic compensation methods are proposed: 1) installing a capacitor behind the output of the FC stack; 2) utilizing the bi-directional converter. Especially, bi-directional converter is used when short of the FC output is detected or predicted by algorithm using data which is measured during previous three cycles. These methods are simulated by PSIM 9.0, then experimental results from the fuel cell system prototype verify the validity of the proposed methods.

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (I) - Velocity Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(I) - 작동유체 유속 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.389-394
    • /
    • 2007
  • The power output of the stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of the regenerator matrix, characteristics of working fluid velocities were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. When a regenerator is not filled with any wire screen, working fluid velocity of the oscillating flow shows 1.3 times faster than that of one directional flow. 2. When a regenerator is filled with the wire screen of No.50, working fluid velocity of the oscillating flow reveals 2.5 times faster than that of one directional flow. 3. When a regenerator is filled with the wire screen of No. 100, working fluid velocity of the oscillating flow shows 2 times faster than that of one directional flow, regardless of the number of packed wire screens. 4. Working fluid velocity is decreased wire the increase in number of meshes and packed wire screens.

Acoustic based Two Dimensional Underwater Localization Considering Directional Ambiguity (방향 모호성을 고려한 수중 음향 기반의 2차원 위치 추정 기술 개발)

  • Choi, Jinwoo;Lee, Yeongjun;Jung, Jongdae;Park, Jeonghong;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.402-410
    • /
    • 2017
  • Acoustic based localization is essential to operate autonomous robotic systems in underwater environment where the use of sensorial data is limited. This paper proposes a localization method using artificial underwater acoustic sources. The proposed method acquires directional angles of acoustic sources using time difference of arrivals of two hydrophones. For this purpose, a probabilistic approach is used for accurate estimation of the time delay. Then, Gaussian sum filter based SLAM technique is used to localize both acoustic sources and underwater vehicle. It is performed by using bearing of acoustic sources as measurement and inertial sensors as prediction model. The proposed method can handle directional ambiguity of time difference based source localization by generating Gaussian models corresponding to possible locations of both front and back sides. Through these processes, the proposed method can provide reliable localization method for underwater vehicles without any prior information of source locations. The performance of the proposed method is verified by experimental results conducted in a real sea environment.