• Title/Summary/Keyword: Directional Trading

Search Result 9, Processing Time 0.022 seconds

The Impact of Index Future Introduction on Spot Market Returns and Trading Volume: Evidence from Ho Chi Minh Stock Exchange

  • NGUYEN, Anh Thi Kim;TRUONG, Loc Dong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.8
    • /
    • pp.51-59
    • /
    • 2020
  • The objective of this study is to enrich the literature by investigating the impact of introduction of index future trading on spot market returns and trading volume in Vietnam. Data used in this study mainly consist of daily VN30-Index and market trading volume series during the period from February 6th, 2012 to December 31st, 2019. Using OLS, GARCH(1,1) and EGARCH(1,1) models, the empirical findings consistently confirm that the introduction of index future trading has no impact on the spot market returns. In addition, the results of the EGARCH(1,1) model indicate that the leverage effect on the spot market volatility is existence in HOSE. Specifically, bad news has a greater effect on the market volatility than good news of the same size. Moreover, our empirical findings reveal that the introduction of index future contracts has the positive impact on the underlying market trading volume. Specifically, the trading volume of the post-index futures introduction increases by 7.5 percent compared with the pre-index futures introduction. Finally, the results obtained from the Granger causality test for the relationship between the spot market returns and the future trading activity confirm that only uni-directional causality running from the market returns to the future trading activity exists in HOSE.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

A Study on the Relation Exchange Rate Volatility to Trading Volume of Container in Korea (환율변동성과 컨테이너물동량과의 관계)

  • Choi, Bong-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • The purpose of this study is to examine the effect of exchange rate volatility on Trading Volume of Container of Korea, and to induce policy implication in the contex of GARCH and regression model. In order to test whether time series data is stationary and the model is fitness or not, we put in operation unit root test, cointegration test. And we apply impulse response functions and variance decomposition to the structural model to estimate dynamic short run behavior of variables. The major empirical results of the study show that the increase in exchange rate volatility exerts a significant negative effect on Trading Volume of Container in long run. The results Granger causality based on an error correction model indicate that uni-directional causality between trading volume of container and exchange rate volatility is detected. This study applies impulse response function and variance decompositions to get additional information regarding the Trading Volume of Container to shocks in exchange rate volatility. The results indicate that the impact of exchange rate volatility on Trading Volume of Container is negative and converges on a stable negative equilibrium in short-run. Th exchange rate volatility have a large impact on variance of Trading Volume of Container, the effect of exchange rate volatility is small in very short run but become larger with time. We can infer policy suggestion as follows; we must make a stable policy of exchange rate to get more Trading Volume of Container

  • PDF

A Study on Stock Trading Method based on Volatility Breakout Strategy using a Deep Neural Network (심층 신경망을 이용한 변동성 돌파 전략 기반 주식 매매 방법에 관한 연구)

  • Yi, Eunu;Lee, Won-Boo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.81-93
    • /
    • 2022
  • The stock investing is one of the most popular investment techniques. However, since it is not easy to obtain a return through actual investment, various strategies have been devised and tried in the past to obtain an effective and stable return. Among them, the volatility breakout strategy identifies a strong uptrend that exceeds a certain level on a daily basis as a breakout signal, follows the uptrend, and quickly earns daily returns. It is one of the popular investment strategies that are widely used to realize profits. However, it is difficult to predict stock prices by understanding the price trend pattern of stocks. In this paper, we propose a method of buying and selling stocks by predicting the return in trading based on the volatility breakout strategy using a bi-directional long short-term memory deep neural network that can realize a return in a short period of time. As a result of the experiment assuming actual trading on the test data with the learned model, it can be seen that the results outperform both the return and stability compared to the existing closing price prediction model using the long-short-term memory deep neural network model.

Hybrid Model Approach to the Complexity of Stock Trading Decisions in Turkey

  • CALISKAN CAVDAR, Seyma;AYDIN, Alev Dilek
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.10
    • /
    • pp.9-21
    • /
    • 2020
  • The aim of this paper is to predict the Borsa Istanbul (BIST) 30 index movements to determine the most accurate buy and sell decisions using the methods of Artificial Neural Networks (ANN) and Genetic Algorithm (GA). We combined these two methods to obtain a hybrid intelligence method, which we apply. In the financial markets, over 100 technical indicators can be used. However, several of them are preferred by analysts. In this study, we employed nine of these technical indicators. They are moving average convergence divergence (MACD), relative strength index (RSI), commodity channel index (CCI), momentum, directional movement index (DMI), stochastic oscillator, on-balance volume (OBV), average directional movement index (ADX), and simple moving averages (3-day moving average, 5-day moving average, 10-day moving average, 14-day moving average, 20-day moving average, 22-day moving average, 50-day moving average, 100-day moving average, 200-day moving average). In this regard, we combined these two techniques and obtained a hybrid intelligence method. By applying this hybrid model to each of these indicators, we forecast the movements of the Borsa Istanbul (BIST) 30 index. The experimental result indicates that our best proposed hybrid model has a successful forecast rate of 75%, which is higher than the single ANN or GA forecasting models.

KOSPI directivity forecasting by time series model (시계열 모형을 이용한 주가지수 방향성 예측)

  • Park, In-Chan;Kwon, O-Jin;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.991-998
    • /
    • 2009
  • This paper deals with directivity forecasting of time series which is useful for futures trading in stock market. Directivity forecasting of time series is to forecast whether a given time series will rise or fall at next observation time point. For directional forecasting, we consider time regression model and ARIMA model. In particular, we study two statistics, intra-model and extra-model deviation and then show usefulness of intra-model deviation.

  • PDF

Green Productivity Analysis of the Logistics Industry for the Global Competitiveness (물류산업의 녹색생산성 평가와 국제경쟁력 강화방안)

  • Choi, Yong-Rok
    • International Commerce and Information Review
    • /
    • v.14 no.4
    • /
    • pp.89-107
    • /
    • 2012
  • Recently, the successful appointment of the general directorate of GCF (Green Climate Fund) in Songdo of Korea made a great history for the golden triangle with GGGI (global Green Growth Institute) and GTC (Green Technology Center). Now, Korea became the Mecca for the global green growth and it gave a great opportunity foe the Korea to lead the global economy in the future. However, to successfully manage the GCF, the Korean government should show their willingness as well as the readiness for the green prowth and green productivity. It is really hard for the Korea, since it takes the second rank for the growth rate of carbon dioxide emission in the world. To overcome this shameful status, it should make the best effort to promote the green productivity, especially in a field of logistics industry, because it takes 21% of global CO2 emission, the second largest portion. The research aims to systematically introduce the Global Malmquist-Luenberger Index (GML) and to evaluate the logistics industry of Korea based on the GML approach. It concludes the innovative technology is utmost important to improve the green productivity of the logistics industry and thus the Korean government should make more aggressive role to fill this missing link in the innovation network.

  • PDF

Federation Trader Model Supporting Interface Between Object Groups (객체그룹간의 상호접속을 지원하는 연합 트레이더 모델)

  • Jeong, Chang-Won;Ju, Su-Jong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1126-1134
    • /
    • 1999
  • 최근 다양한 멀티미디어 서비스를 지원하기 위한 통신망 관리와 서비스 관리가 통합된 개방형 정보 통신망의 구조가 요구되고 있다. 이러한 구조를 기반으로, TINA-C(Tele-communications Information Networking Architecture-Consortium)에서는 분산 환경에서 분산 어플리케이션 객체들에 대한 복잡한 서비스 및 관리 인터페이스들을 간결하도록 객체그룹의 개념을 정의하고 있다. 이러한 환경 속에서 트레이딩 서비스는 통신 서비스를 제공하는 객체그룹간의 상호작용을 지원하는데 매우 중요하다.따라서, 본 논문에서는 객체그룹간의 상호접속을 지원할 수 있는 트레이딩 기능과 이들 트레이더들간의 연동을 위한 트레이더 연합 모델을 제시하고자 한다. 이를 위해 우리는 트레이더의 중개자로서 Cooperator를 설계하여 기존의 트레이더와 연동시켰다. 이러한 결과로서 우리의 새로운 트레이더 연합 모델에서 Cooperator는 객체그룹간의 상호접속에서 객체들의 접속 권한의 체크 기능과 기존의 트레이더 연합모델의 문제점인 트레이더들간의 단 방향 연결문제를 보완하여 양방향 연결 기능을 갖도록 하였다. 끝으로, 이러한 해결 과정을 보이기 위해 트레이더와 Cooperator들로 이루어진 본 연합모델에서 분산 객체그룹간의 상호접속 절차과정과 사건 추적 다이어그램을 보였다.Abstract Recently, the open networking architecture is required to support various multimedia services as integrated functions of network management and service management. Based on this architecture, TINA-C defines an object group concept for simplifying complex management and service interfaces, when distributed application is executed in distributed environments. Within the support environment the trading service is an important of the interacting object groups which provide a telecommunication service.Hence, we suggest the trader federation model for supporting interconnections between object groups and among existing traders by using the cooperator we designed, as an intermediator among traders. Our cooperator has functions for checking access rights of objects in object groups, and for providing bidirectional linkage among traders. Up to now, the existing trader federation models have a single directional linkage for interactions among traders. Finally, we showed the interface procedure and the event trace diagram of distributed object groups using our model consisted of traders and the cooperators.

The Intraday Lead-Lag Relationships between the Stock Index and the Stock Index Futures Market in Korea and China (한국과 중국의 현물시장과 주가지수선물시장간의 선-후행관계에 관한 연구)

  • Seo, Sang-Gu
    • Management & Information Systems Review
    • /
    • v.32 no.4
    • /
    • pp.189-207
    • /
    • 2013
  • Using high-frequency data for 2 years, this study investigates intraday lead-lag relationship between stock index and stock index futures markets in Korea and China. We found that there are some differences in price discovery and volatility transmission between Korea and China after the stock index futures markets was introduced. Following Stoll-Whaley(1990) and Chan(1992), the multiple regression is estimated to examine the lead-lag patterns between the two markets by Newey-West's(1987) heteroskedasticity and autocorrelation consistent covariance matrix(HAC matrix). Empirical results of KOSPI 200 shows that the futures market leads the cash market and weak evidence that the cash market leads the futures market. New market information disseminates in the futures market before the stock market with index arbitrageurs then stepping in quickly to bring the cost-of-carry relation back into alignment. The regression tests for the conditional volatility which is estimated using EGARCH model do not show that there is a clear pattern of the futures market leading the stock market in terms of the volatility even though controlling nonsynchronous trading effects. This implies that information in price innovations that originate in the futures market is transmitted to the volatility of the cash market. Empirical results of CSI 300 shows that the cash market is found to play a more dominant role in the price discovery process after the Chinese index started a sharp decline immediately after the stock index futures were introduced. The new stock index futures markets does not function well in its price discovery performance at its infancy stage, apparently due to high barriers to entry into this emerging futures markets. Based on EGAECH model, the results uncover strong bi-directional dependence in the intraday volatility of both markets.

  • PDF