• 제목/요약/키워드: Directional Reduced Integration

검색결과 3건 처리시간 0.015초

적응성 선향저감적분법에 의한 요소의 안정성 향상과 강소성 유한요소해석에의 적용 (Improvement of Element Stability using Adaptive Directional Reduced Integration and its Application to Rigid-Plastic Finite Element Method)

  • Park, K.;Lee, Y.K.;Yang, D.Y.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.32-41
    • /
    • 1995
  • In the analysis of metal forming processes by the finite element method, there are many numerical instabilities such as element locking, hourglass mode and shear locking. These instabilities may have a bad effect upon accuracy and convergence. The present work is concerned with improvement of stability and efficiency in two-dimensional rigid-plastic finite element method using various type of elemenmts and numerical intergration schemes. As metal forming examples, upsetting and backward extrusion are taken for comparison among the methods: various element types and numerical integration schemes. Comparison is made in terms of stability and efficiency in element behavior and computational efficiency and a new scheme of adaptive directional reduced integration is introduced. As a result, the finite element computation has been stabilized from the viewpoint of computational time, convergency, and numerical instability.

  • PDF

선향적저감적분을 이용한 탄소성 유한요소법에 의한 블레이드의 성형 해석 (Analysis of Blade Forming using an Elasto-Plastic Finite Element Method with Directional Reduced Integration)

  • 최태훈;허훈
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.365-374
    • /
    • 1995
  • Numerical simulation of blade forming is carried out as stretch forming by an elasto-plastic finite element method. The method adopts a Lagrangian formulation, which incorporates large deformation and rotation, with a penalty method to treat the contact boundary condition. Numerical integration is done with a directional reduced integration scheme to avoid shear locking. The numerical results demonstrates various final shapes of blades which depend on the variation of the stretching force. The strain distributions in deformed blades are also obtained with the variation of the stretching force.

  • PDF

탄소성 유한요소법에 의한 드로우비드 성형 해석 (Numerical Simulation of Drawbead Formation in a Binder Wrap Process by an elasto-Plastic Finite Element Method)

  • 최태훈;허훈;이장희;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.196-202
    • /
    • 1995
  • Drawbead formulation is the first process together with a binder wrap process in a sheet metal forming process. The purpose of a drawbead is to control the flow of the metal into the die in panel press forming. To simulate the drawbead formation process, an elasto-plastic finite element formulation is derived from the equilibrium equation an drelated boundary conditions considering the proper contact conditons. The developed finite element program is applied to drawbead formation in the plane strain condition. The simulation of drawbead formation produces the distribution fo stress and strain along the bead and the resultant elongation of the sheet in the cavity region with respect to various cavity dimensions of the sheet as well as the punch force of a drawbead and the amount of draw-in with respect to the stroke fo a drawbead. The numerical resutls provides the fundamental information as a boundary condition to analyze the complex binder wrap phenomena and panel press forming in simple way.

  • PDF