• Title/Summary/Keyword: Direction-coefficient

Search Result 859, Processing Time 0.031 seconds

Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber (탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성)

  • Kim, Minkyoung;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.

A Study for The Accuracy Assessment Method of Satellite Sensor Modeling (위성영상 센서모형화의 정확도 평가방법에 관한 연구)

  • Ko, Hyun-Soo;Choi, Chul-Soon;Hong, Jae-Min;Yoon, Chang-Rak
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.79-84
    • /
    • 2005
  • Recent researches about the accuracy assessment of the satellite sensor modeling usually focused on the quantitative analysis of errors. Quantitative error analysis contains its limitation that the distribution property of error can not be analyzed. The numerical evaluation of result of the satellite sensor modeling drop its confidence because of the absence of the distribution property of error. This study can be presented the distribution property of error to calculate RMSE and direction-coefficient of error. Moreover, Direction-coefficient which is closed to 1 s contains systematic errors. On the contrary, direction-coefficient which is closed to the zero contains random errors. To analyse the direction of errors, we will indicate that a formula is reduced the error.

  • PDF

Simple Design of Sand Drains Considering Smear Effect (교란효과를 고려한 샌드 드레인의 약식설계)

  • 유영삼;정충기
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.33-40
    • /
    • 1994
  • The effects of smear and well resistance should be taken into account for the design of sand drains. Practically, simple design, which employs the method using 112 reduced diameter of drains or assuming the coefficient of consolidation in horizontal direction equals to that in vertical direction, based on the theory neglecting these effects, has been used. In this study, the reliability of existing simple design methods as well as the influences of smear and well resistance was investigated with the equations proposed by Hansbo and Onoue. It is shown that the consolidation time is chiefly governed by the effect of smear for drains with highly permeable sands. For general soil condition and placing type of sand drain, consolidation time is underestimated for simple design wi어. 1/2 reduced diameter of drains, and it is overestimated for that with the assumption that the coefficient of consolidation in horizontal direction equals to that in vertical direction. Through the investigations on different reduced diameter, it was shown that simple design with 1/4 reduced diameter of drains yielded the reliable results with errors less than 6%.

  • PDF

Estimating coefficient of consolidation and hydraulic conductivity from piezocone test results - Case studies

  • Hossain, Md. Julfikar;Chai, Jinchun
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.577-592
    • /
    • 2014
  • The methods for estimating in-situ hydraulic conductivity ($k_{hp}$) and coefficient of consolidation ($c_{hp}$) in the horizontal direction from piezocone penetration and dissipation test results have been investigated using test results at two sites in Saga, Japan. At the two sites the laboratory values of hydraulic conductivity ($k_v$) and coefficient of consolidation ($c_v$) in the vertical direction are also available. Comparing $k_{hp}$ with $k_v$ and $c_{hp}$ with $k_v$ values, suitable methods for estimating $k_{hp}$ and $c_{hp}$ values are recommended. For the two sites, where $k_{hp}{\approx}k_v$ and $c_{hp}{\approx}2c_v$. It is suggested that the estimated values of $k_{hp}$ and $c_{hp}$ can be used in engineering design.

Elastic Buckling Analysis of a Simply Supported Orthotropic Plate with Exponentialy Variable Thickness (두께가 변하는 직교이방성판의 탄성좌굴해석)

  • 장성열;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.25-28
    • /
    • 2001
  • The problem considered is the buckling of a rectangular orthotropic plate, tapered in thickness in a direction parallel to two sides and compressed in that direction. Curves are presented showing the variation of buckling stress coefficient with the special loads. The type of thickness variation is exponential. While this paper is presented how to design for an efficient orthotropic plate taper from physical consideration.

  • PDF

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF

The Study of Correlations between Air-Sea Temperature Difference and Precipitation and between Wind and Precipitation in the Yeongdong Coastal Region in Relation to the Siberian High (겨울철 시베리아 고기압과 관련된 영동 해안 강수량과 해기차 및 바람의 상관성에 관한 연구)

  • Song, Ji-Ae;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.127-140
    • /
    • 2016
  • In this study, the correlations between AST850 and precipitation, and those between WDT and precipitation in the Yeongdong coastal region under the direct/indirect influence of the expansion of cP (continental polar air mass) high were quantitatively analyzed based on the winter season data for the last 20 years, according to surface pressure patterns such as Type 1 (cP high expansion type), Type 2 (cP high expansion + trough type), Type 4 (South trough type), and Type 5 (East Sea trough type). Here, AST850 represents 'sea surface temperature minus temperature on 850 hPa level' and WDT represents 'a speed of 1000 hPa wind projected onto a certain wind direction times precipitation duration in hour'. First, the correlation coefficients between AST850 and precipitation in Type 1, Type 2, and Type 5 cases were 0.253, 0.384, and 0.398 respectively, indicating that a tendency of increasing precipitation linearly with the value of AST850 is slightly presented. In the case of Type 4, however, the coefficient was -0.15, representing almost no linear correlation between AST850 and precipitation. In the correlation between WDT and precipitation, there was the largest correlation coefficient (0.464) between WDT along a direction of $90^{\circ}$ and at EN1 in Type 1 cases. In the case of Type 2, there was the largest correlation coefficient (0.767) between WDT along a direction of $67.5^{\circ}$ and at ES1. In the case of Type 4, there was the largest correlation coefficient (0.559) between WDT along a direction of $22.5^{\circ}$ and at EN2. Finally, in the case of Type 5, there was the largest correlation coefficient (0.945) between WDT along a direction of $315^{\circ}$ and at SE1, representing the largest coefficient among the types. It was found that surface wind directions with the highest correlations to precipitation in the Yeongdong coastal area on winter season were varied according to surface pressure patterns, and that the correlations between WDT and precipitation were higher than those between AST850 and precipitation.

An Experimental Study on the Estimate of Wind Force Coefficient of Transmission Tower Rectangular Frame (철탑 사각골조의 풍력 계수 산정에 관한 실험적 연구)

  • Shin, Koo-Yong;Lim, Jae-Seob;Hwang, Kyu-Seok;Kil, Yong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.73-81
    • /
    • 2011
  • The wind force coefficient of a transmission tower frame shows several characteristics when the section shape, solidity ratio, and wind direction angle are changed. In this study, the wind force characteristics of a transmission tower frame with a basic structure were evaluated using different solidity ratios and wind direction angles in a wind tunnel test. According to the solidity ratio, the size of the structure and the rectangular-frame model of the transmission tower were changed by adding a two-dimensional (2D) or three-dimensional (3D) structure. The transmission tower's rectangular frame was tested by changing the wind direction angle of the 2D-type structure from 0 to $90^{\circ}$ and by changing the wind direction angle of the 3D-type structure from 0 to $45^{\circ}$ Based on the results that were obtained, it can be concluded that the wind force coefficient of a transmission tower frame can be used as preliminary data in deciding the transmission tower's wind load.

Effects of the Distance between Houses on the Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 동간거리가 풍력계수에 미치는 영향)

  • 이현우;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.76-85
    • /
    • 1993
  • The purpose of this study was to analyze the wind force distribution on the two single-span arched plastic house depending upon the house spacing and wind direction, which may provide the fundamental criteria for the structural design. In order to specify the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients and the drag force coefficients were estimated from the wind tunnel test data. The results obtained are as follows : 1. At the wind direction of 90$^{\circ}$, there was a typical span interval at which the maximum negative pressure was occured at the edge of the inside walls. 2. In the consideration of wind loads, the wind force coefficients estimated from independent single-span arched plastic house should not be directly applied to the structural design on the double houses separated. 3. The average maximum negative wind force on the inside walls was occured at the wind direction of 90$^{\circ}$, and the variations depending on the span intervals was not significant. 4. The average maximum drag force was occured at the wind direction of 300, and the magnitude of drag force was more significant at the first house. As the distance between two houses was increased, the drag force was slightly increased for every wind direction.

  • PDF