• Title/Summary/Keyword: Direction of arrival (DOA)

Search Result 117, Processing Time 0.025 seconds

A Study on Mobile Target Estimation Resolution using Effects of Model Errors and Sensitivity Analysis

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.21-23
    • /
    • 2013
  • The antenna pattern in this case has a main beam pointed in the desired signal direction, and has a null in the direction of the interference.The conventional antenna pattern concepts of beam width, side lobes, and main beams are not used, as the antenna weights are designed to achieve a set performance criterion such as maximization of the output SNR.A new direction of arrival estimation method using effects of model errors and sensitivity analysis is proposed. Two subspaces are used to form a signal space whose phase shift between the reference signal and its effects of model error signal. Through simulation, the performance showed that the proposed method leads to increased resolution and improved accuracy of DOA estimation relative to those achieved with existing method. Since a desired signal is obtained after interference rejection through correction effects of model error, the effect of channel interference on the estimation is significantly reduced.

The phase correction method for the interferometer direction-finding system (인터페로미터 방향탐지 시스템의 위상보정 방법)

  • Lee, Jung-hoon;Jo, Jeil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.355-356
    • /
    • 2018
  • An interferometer is antenna system composed fo two or more elements that can be used to determine the diretion of arrival (DOA) of a received signal by measuring the relative phase between receiving elements. In order to minimize the error of the direction-finding accuracy in interferometer direction-finding system (DFS), the phase correction is accomplished. In this paper, the several methods for the phase correction are classified and the advantage and disadvantage of those methods are compared.

  • PDF

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation (간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.

Enhanced Resolution of Spatially Close Incoherent Sources using Virtually Expanded Arrays (가상 확장된 배열 안테나를 이용한 근접 입사신호의 분해능 향상 기법)

  • Kim, Young-Su;Kang, Heung-Yong;Kim, Chang-Joo
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2002
  • In this paper, we propose a resolution enhancement method for estimating direction-of-arrival(DOA) of narrowband incoherent signals incident on a general array. The resolution of DOA algorithm is dependent on the aperture size of antenna array. But it is very impractical to increase the physical size of antenna array in real environment. We propose the method that improves resolution performance by virtually expanding the sensor spacing of original antenna array and then averaging the spatial spectrum of each virtual array which has a different aperture size. Superior resolution capabilities achieved with this method are shown by simulation results in comparison with the standard MUSIC for incoherent signals incident on a uniform circular array.

  • PDF

Performance Characteristics of a 50-kHz Split-beam Data Acquisition and Processing System (50 kHz Split Beam 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.798-807
    • /
    • 2021
  • The directivity characteristics of acoustic transducers for conventional single-beam echo sounders considerably limit the detection of fish-size information in acoustic field surveys. To overcome this limitation, using the split-aperture technique to estimate the direction of arrival of single-echo signals from individual fish distributed within the sound beam represents the most reliable method for fish-size classification. For this purpose, we design and develop a split-beam data acquisition and processing system to obtain fish-size information in conjunction with a 50-kHz single-beam echo sounder. This split-beam data acquisition and processing system consists of a notebook PC, a field-programmable gate array board, an external single-transmitter module with a matching network, and four-channel receiver modules operating at a frequency of 50-kHz. The functionality of the developed split-beam data processor is tested and evaluated. Acoustic measurements in an experimental water tank showed that the developed data acquisition and processing system can be used as a fish-sizing echo sounder to estimate the size distribution of individual fish, although an external single-transmitter module with a matching network is required.

Improvement of DOA Resolution Capability for Coherent Sources Using a Characteristic of Spatial Spectrums (공간 스펙트럼 특성을 이용한 코히런트 신호의 도래각 분해능 향상)

  • Park, Gwang-Moon;Lee, Hyeung-Gu;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1201-1208
    • /
    • 2009
  • The Direction-Of-Arrival(DOA) resolution of signals depends on the aperture size of the array. Therefore it is not easy to resolve closely spaced coherent signals impinge on an array with a small radius. In order to overcome the problem, a new method is proposed to use the characteristic of spatial spectrums for arrays which have different aperture sizes after virtually expanding the spacing of original antenna array. In case of coherent signals impinge on an uniform circular array, the perfect DOA resolution capability of 100 % is achieved at the SNR range of -10 dB to 0 dB by the Deterministic Maximum Likelihood(DML) algorithm including the proposed method. On the other hand, the standard DML algorithm can not resolve signals at all at the same SNR.

A Study on the optimum covariance matrix to smart antenna (스마트 안테나에서 최적 공분산 행렬 연구)

  • Lee, Kwan Hyoung;Song, Woo Young;Joo, Jong Hyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • This paper consider the problem of direction of arrival(DOA) estimation in the presence of multipath propagation. The sensor elements are assumed to be linear and uniformly spaced. Numerous authors have advocated the use of a beamforming preprocessor to facilitate application of high resolution direction finding algorithms The benefits cited include reduced computation, improved performance in environments that include spatially colored noise, and enhanced resolution. Performance benefits typically have been demonstrated via specific example. The purpose of this paper is to provide an analysis of a beamspace version of the MUSIC algorithm applicable to two closely spaced emitters in diverse scenarios. Specifically, the analysis is applicable to uncorrelated far field emitters of any relative power level, confined to a known plane, and observed by an arbitrary array of directional antenna. In this paper, we researched about optimize beam forming to smart antenna system. The covariance matrix obtained using fourth order cumulant function. Simulations illustrate the performance of the techniques.

Performance Improvement of MIMO MC-CDMA system with multibeamforming

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2019
  • In this paper, we propose the beamforming algorithm for the performance improvement of MIMO MC-CDMA system. The proposed multibeamforming of MIMO MC-CDMA structure having the same number of beamformer as the number of transmit antenna is derived by calculating the error signals between the coded pilot symbols and the corresponding received signals from the multiple transmitters of the desired user in the frequency domain, transforming the frequency-domain error signals into time-domain error signals, and updating the weights of the multibeamformer in the time-domain in the direction minimizing the mean squared error (MSE). The proposed approach can track each direction of arrival (DOA) of the signals from multi-antennas of a desired user. The performance improvement is investigated through computer simulation by applying the proposed approach to MIMO MC-CDMA system in a multipath fading channel with multiusers.

Angle-Range-Polarization Estimation for Polarization Sensitive Bistatic FDA-MIMO Radar via PARAFAC Algorithm

  • Wang, Qingzhu;Yu, Dan;Zhu, Yihai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2879-2890
    • /
    • 2020
  • In this paper, we study the estimation of angle, range and polarization parameters of a bistatic polarization sensitive frequency diverse array multiple-input multiple-output (PSFDA-MIMO) radar system. The application of polarization sensitive array in receiver is explored. A signal model of bistatic PSFDA-MIMO radar system is established. In order to utilize the multi-dimensional structure of array signals, the matched filtering radar data can be represented by a third-order tensor model. A joint estimation of the direction-of-departure (DOD), direction-of-arrival (DOA), range and polarization parameters based on parallel factor (PARAFAC) algorithm is proposed. The proposed algorithm does not need to search spectral peaks and singular value decomposition, and can obtain automatic pairing estimation. The method was compared with the existing methods, and the results show that the performance of the method is better. Therefore, the accuracy of the parameter estimation is further improved.

The Achievable Performance of Unitary-ESPRIT Algorithm for DOA Estimation

  • Satayarak, Peangduen;Rawiwan, Panarat;Supanakoon, Pichaya;Chamchoy, Monchai;Promwong, Sathaporn;Tangtisanon, Prakit
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1578-1581
    • /
    • 2002
  • In this paper, the accuracy of the direction-of-arrival (DOA) estimation of signal impinged on the uniform linear array (ULA) is investigated. The conventional beamformer and Capon’s beamformer categorized in beamformaing techniques as well as MUSIC (MUlti-pie Signal Classification) and ESPRIT (Estimation of Signal Invariance Techniques) categorized in subspace- based methods are employed to estimate the DOAs. From the simulation result under uncorrelated environment, MUSIC can prominently distinguish the DOAs while the beamforming techniques cannot demonstrate the DOAs as clear as MUSIC does. Moreover, Uni-tary ESPRIT is employed to estimate the DOAs under uncorrelated signal conditions. By means of Uni-tary ESPRIT, the estimation has more accuracy with the computational-time reduction. In addition, it incorporates forward-backward averaging; thus Unitary ES-PRIT can overcome the problem of the coherent signal condition.

  • PDF