• 제목/요약/키워드: Direction of Fatigue Crack Growth

검색결과 81건 처리시간 0.022초

혼합모드(I+II)하에서 각도와 균열길이 변화를 갖는 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Angle and Crack Length)

  • 정의효
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.73-79
    • /
    • 2000
  • The applications of fracture mechanics have traditionally concentrated on cracks loaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at investigation of fatigue crack growth behaviour under mixed mode(I+II) with variation of angle and pre-crack length in two dimensional branched type precrack. Especially the direction of fatigue crack propagation was predicted and effective stress intensity factor was calculated by finite element analysis(FEA. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis was carried out and the theoretical predictions were compared with experimental results.

  • PDF

Fatigue Crack Growth Behavior for Welded Joint of X80 Pipeline Steel

  • Kim, Young-Pyo;Kim, Cheol-Man;Kim, Woo-Sik;Shin, Kwang-Seon
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.43-48
    • /
    • 2009
  • The fatigue crack growth behavior of high strength X80 pipeline steel was investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the rolling direction of the pipeline. Also, the fatigue crack growth rates for welded joint of X80 pipeline steel were investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the welding line. The experimental results indicated the fatigue crack growth behavior was markedly different in three zones, weld metal, heat affected zone and base metal of welded joints. There was a trend toward increment in the fatigue life of weld metal and heat affected zone as compared with the X80 pipeline steel.

경사균열을 갖는 복합재료 보강판의 피로균열 성장에 관한 연구 (A Study on Fatigue Crack Growth Analysis of Inclined Cracked Plate with Composite Patched Repair)

  • 정기현;양원호;김철
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2091-2099
    • /
    • 2001
  • Fatigue crack growth behavior of inclined cracked Al 6061-T6 thick aluminum plate(6mm) repaired with the bonded composite patch was studied. A 0°inclined crack bonded reinforced composite patch and 15°, 30°, 45°, 60°inclined crack plates were tested. The effect of patch and inclined angle were studied and compared to each other. Also we investigated to the crack propagation direction and debonding behavior during the fatigue crack growth test. In this paper. a study was con(ducted to get an fatigue life, fatigue crack growth ratio and crack growth direction. Finally, the effectiveness of composite patch on inclined cracked plate was investigated. The results demonstrated thats there was a definite variation in fatigue life and fatigue crack growth behavior depending on the inclined crack angle.

5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성 (Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy)

  • 옹장우;진근찬;이성근;김종배
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.461-471
    • /
    • 1989
  • 본 연구에서는 혼합 모우드 균열문제의 연구를 위하여 .KAPPA.$_{II}$ /.KAPPA.S1I\ulcorner조절이 간편하고, 균열진전경로가 하중방향에 따른 균일전면의 자유표면의 영향을 균일하게 한 시험편(이하 RCM 또는 round compact mixed-mode 시험편이라 한다)을 고안하여 균열길이 및 하중작용 방향에 따른 .KAPPA.$_{I}$ 및 .KAPPA.S1II를 수치해석한 다음 일반화 하였다. 또 고강도와 용접성이 요구되는 항공기부품, 압력용기, 지상운송차량 등에 사용되고 있는 5083-H115 알루미늄 합금에 대해 혼합 모우드 균열진전 방향 및 피로균열 진전특성을 분석하고자 한다.다.

SiC 휘스커 보강 Al 6061 복합재료의 피로균열진전 특성에 관한 기초 연구 (The Basic Study on Fatigue Crack Growth Behavior of SiC Whisker Reinforced Aluminium 6061 Composite Material)

  • 권재도;안정주;김상태
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2374-2385
    • /
    • 1994
  • SiCw/Al composite material is especially attractive because of their superior specific strength, specific stiffness, corrosion fatigue resistance, creep resistance, and wear resistance compared with the corresponding wrought Al alloy. In this study, Fatigue crack growth behavior and fatigue crack path morphology(FCPM) of SiC whisker reinforced Al 6061 alloy with 25% SiC volume fraction and Al 6061 allay were performed. Result of the fatigue crack growth test sgiwed that fatigue crack growth rate of SiCw/Al 6061 composite was slower than that of Al 6061 matrix therefore it was confirmed that Sic whisker have a excellent fatigue resistance. And Al 6061 matrix had only FCPM perpendicular to loading direction. On the other hand SiCw/Al 6061 composite had three types in fatigue crack path morphology. First type is that both sides FCPM of artificial notch are perpendicular to loading direction. Second type is that a FCPM in artifical notch has slant angle to loading direction and the other side FCPM is perpendicular to loading direction. Third type is that both sides FCPM of notch have slant angle to loading direction. It was considered that this kinds of phenomena were due to non-uniform distribution of SiC whisker and confirmed by SEM observation for fracture mechanism study.

혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동 (Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length)

  • 정의효;허방수;권윤기;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

축대칭 압출금형의 피로수명예측에 관한 연구 (A Study on the Prediction of Fatigue Life in the Axi-symmetric Extrusion Die)

  • Ahn, S.H.;Kim, T.H.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.80-87
    • /
    • 1996
  • The present paper will give some results of the fatigue behavior of typical axi-symmetric forward extrusion die. The extrusion process is analyzed by rigid-plastic FEM and the deformation analysis of extrusion die is conducted by elasto-plastic FEM. To approach the crack problem LEFM (Linear Elastic Fracture Mechanics) is introduced. Using special element in order to conside the sigularity of stress/ strain in the vicinity of the crack tip, stress intensity factor and the effective stress intensity factor is calculated. Applying proper fatigue crack propagation criterion such as Paris/Erdogan fatigue law and maximum principal criterion to these data, then, the angle and the direction of fatigue crack propagation is simulated. In result, it is proved that the simulated fatigue crack propagates in the zigzag path along the radial direction and fatigue life of the extrusion die is evaluated by using the computed crack growth rate.

  • PDF

Al 7075-T651의 부식피로균열 성장 거동에 관한 연구(II) (A Study on Corrosion Fatigue Crack Growth Behavior in Al 7075-T651(II))

  • 한지원;우흥식
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.3-10
    • /
    • 1999
  • Fatigue crack growth rates in commercial plate of high strength Al 7075-T651 were investigated for the T-L direction in air, water and sea water. In this paper the effect of cyclic load wave-form(trapezoid and triangle) on fatigue crack growth rates in air, water and sea water environments were investigated using standard LEFM testing procedures. It was founded that the fatigue crack growth behaviors were not affected by cyclic load wave-forms. In region II (stable crack growth region), the fatigue crack growth behaviors were insensitive to cyclic load wave-forms and were sensitive to environment i.e. fatigue crack growth behaviors were higher in sea water than in air for all cyclic load wave-form. The result of fractographical morphology in air, water and sea water by SEM showed obvious dimple rupture and typical striation in air, but transgranular fracture surface in water and sea water. The values m are not affected by corrosion environments but C are different values.

  • PDF

압연 및 용접방향이 같은 맞대기 용접강판의 하중방향에 따른 피로균열 진전특성 (Characteristics of Fatigue Crack Propagations with Respect to Loading Directions in Butt-Welded Steel Plates with the Same Direction of Rolling and Welding Bead)

  • 이용복;김성엽;오병덕
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.37-42
    • /
    • 2005
  • Most of the welding steel plate structures have complicated mechanical problems such as rolling directional characteristics and residual stresses caused by manufacturing process. For the enhancement of reliability and safety in those structures, therefore, a systematic investigation is required. SS400 steel plate used for common structures was selected and welded by FCAW butt-welding process for this study, and then it was studied experimently about characteristics of fatigue crack propagations with respect to rolling direction and welding residual stress of welded steel plates. When the angles between rolling direction and tensile loading direction in base material are increased, their ultimate strength not show a significant difference, but yielding strength are increased and elongations are decreased uniformly. It is also shown that fatigue crack growth rate can be increased from those results. When the angles between welding bead direction and loading direction in welded material are increase, fatigue crack growth rate of them are decreased and influenced uniformly according to the conditions of residual stress distribution. In these results, it is shown that the welded steel plate structures are needed to harmonize distributed welding residual stress, rolling direction and loading direction fur the improvement of safety and endurance in manufacture of their structures.