• Title/Summary/Keyword: Direction measurement

Search Result 1,590, Processing Time 0.026 seconds

Loop Selective Direction Measurement for Distance Protection

  • Steynberg, Gustav;Koch, Geyhard
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.423-426
    • /
    • 2006
  • Distance relays achieve selective tripping by measurement of all short circuit fault conditions inside set reaches. The direction of the fault, forward or reverse is commonly determined with a dedicated measurement to ensure selectivity under all conditions. For the direction decision (measurement) a number of alternatives are available. This paper describes a loop selective direction measurement and illustrates by means of a typical fault why this is superior to a non loop selective direction measurement such as that based on negative sequence quantities.

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 장서일;이연수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.632-638
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured by the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, 2 (perpendicularity) axis was the highest value in vibration level, but vertical direction was the highest value at 25 m point and longitudinal direction was the highest value at 50 m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, Z axis was the highest value in vibration level, but in vibration velocity transverse direction was the highest value at ground, was vertical direction at 1st floor, was longitudinal direction at 3rd floor and was vertical and longitudinal direction at 5th floor. The vibration level and the vibration velocity of 50 m point showed higher correlation value than 25 m point at the ground, but those of 25 m point showed higher correlation value than 50 m point at the apartment.

A Study on the Errors at the Measurement of Sound Power (음향파워 측정 시 오차에 대한 고찰)

  • Na, Hae-Joong;Lim, Byoung-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.917-924
    • /
    • 2012
  • Noise power of large machineries, such as textile looms, winders, and twisting machines, is often measured in a reverberant space because they cannot be installed and operated in an anechoic chamber due to their size, weight, and operating conditions. Factors affecting the measurement error of an in-situ noise power measurement include the nonuniform reverberation time and the direction of sound intensity vector which is usually regarded as normal to the measurement surface. In this study errors due to these factors are estimated with the aid of numerical simulation based on the ray-tracing technique. The averaging of reverberation times measured at several points on the measurement surface is suggested to reduce the errors from nonuniform absorption. Also the direction cosine of each surface element is taken into account, which as a whole is represented as a solid angle of the measurement surface.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Precision Evaluation of Three-dimensional Feature Points Measurement by Binocular Vision

  • Xu, Guan;Li, Xiaotao;Su, Jian;Pan, Hongda;Tian, Guangdong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • Binocular-pair images obtained from two cameras can be used to calculate the three-dimensional (3D) world coordinate of a feature point. However, to apply this method, measurement accuracy of binocular vision depends on some structure factors. This paper presents an experimental study of measurement distance, baseline distance, and baseline direction. Their effects on camera reconstruction accuracy are investigated. The testing set for the binocular model consists of a series of feature points in stereo-pair images and corresponding 3D world coordinates. This paper discusses a method to increase the baseline distance of two cameras for enhancing the accuracy of a binocular vision system. Moreover, there is an inflexion point of the value and distribution of measurement errors when the baseline distance is increased. The accuracy benefit from increasing the baseline distance is not obvious, since the baseline distance exceeds 1000 mm in this experiment. Furthermore, it is observed that the direction errors deduced from the set-up are lower when the main measurement direction is similar to the baseline direction.

A Methodology of Finding the Direction of Lightning Discharge using Loop-type Magnetic Field Sensors (루프형 자계센서를 이용하여 뇌방전이 발생한 방향을 탐지하는 기법)

  • Lee, Bok-Hee;Cho, Chi-Youn;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.63-68
    • /
    • 2014
  • This paper deals with a methodology that applies the time-varying magnetic fields produced by the cloud discharges to find the direction of thunderstorm movement. We investigated the basic performance of the magnetic field measurement system composed of multi-turn loop-type sensors, the differential amplifier and active integrator. As a result, the response characteristics of the magnetic field sensor system to sinusoidal signals was excellent. The frequency bandwidth ranges from about 1 kHz to 500 kHz, the response sensitivity was 0.16mV/nT. In addition, we proposed the algorithm that determines the direction of lightning discharges using the comparison of the output signals of right-angled loop-type magnetic field sensors. The accuracy of the direction finding of lightning discharges is fairly well within the measurement error of less than $5^{\circ}$. The magnetic field measurement system proposed in this work can be used to track the direction of thunderstorm movement.

A Design of Simple and Precision Direction Finder with a Combination of an Amplitude Measurement and Phase Measurement

  • Lim Joong-Soo
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.35-38
    • /
    • 2005
  • This paper describes a design of simple and precision direction finder that can be adapted to shipboard or mobile vehicles used for Electronic support measure, ELINT and radio signal monitoring systems. The direction finding technology has improved with monolithic integrated circuit, linear array antennas, and interferometer. Interferometer uses the phase-comparison principle and has a good direction finding accuracy but it has an ambiguity problem. We suggest a simple ambiguity solver using phase-comparison technology with amplitude-comparison principle. The direction finding device that has been designed by the suggested method has 0.7 degree RMS error in azimuth angle and 0.6 degree RMS error in elevation angle in 0.5 - 2.0 GHz.

  • PDF

Development of a Force Measurement and Communication System for the Force Measuring System in Industrial Robots (산업용 로봇의 힘측정 시스템을 위한 힘측정 및 통신장치 개발)

  • Lee, Kyeong-Jun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • This paper describes the design of a force measurement and communication system for the force measuring system in industrial robots. The force measurement and communication system is composed of a multi-axis force sensor and a controller for measuring the forces (x-direction force, y-direction force and z-direction force) and sending the measured forces to the robot's controller (PLC: Programmable Logic Controller). In this paper, the force measurement and communication system was designed and fabricated by using a DSP (Digital Signal Processor). An environment test and a grinding and deburring test using an industrial robot with the force measurement and communication system with three-axis force sensor were carried out to characterize the system. The tests showed that the system could safely measure the forces from the three-axis force sensor and send the measured forces to the industrial robot's controller while the grinding and deburring test was performed. Thus, it is thought that the fabricated force measurement and communication system could be used for controlling the force for an industrial robot's grinding and deburring.

A Vision Based Pallet Measurement Method by Estimating 3D Direction of A Line Parallel to The Ground (지면 평행 직선의 3차원 방향 추정에 의한 비전 기반 파렛트 측정 방법)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.10
    • /
    • pp.1229-1235
    • /
    • 2020
  • A line parallel to the ground is frequently shown in our daily life, which enables us to guess its direction. Especially, such a guess tends to become clear when a vanishing line of the ground is shown together. In this paper, a vision based pallet measurement method is suggested, which uses a technique for estimating three-dimensional direction of a line parallel to the ground. The technique computes actually a vector heading to intersection of a given imaged line parallel to the ground and the ground vanishing line determined previously on calibrating a measurement camera. Through an experiment of measuring a real commercial pallet with various orientation and distance, we found that the technique could measure the orientation of the pallet correctly and accurately. The technique worked well even though an edge line available on the front plane of a pallet was almost parallel to the ground vanishing line.